AIM OF THE STUDY: This study aimed to systematically review all available evidence which purports to support these claims.
MATERIAL AND METHODS: The systematic review accorded with the Cochrane Collaboration framework and PRISMA reporting. Databases including MEDLINE, Excerpta Medica Database (EMBASE), Cochrane library database, and Google Scholar were searched by keywords, Yahom and Ya-hom. Pharmacological and toxicity data from non-animal and animal studies were included.
RESULTS: Twenty-four articles: 2 on in vitro cell lines or bacteria, 3 in vitro cell-free, 5 in vitro animal, 13 in vivo and 1 human mainly reported (A) Cardiovascular effects (i) transient hypotension (0.2-0.8g/kg, intravenous injection (i.v.)), increased cerebral blood flow (2g/kg, single oral) and vascular dilatation/relaxation (ii) elevated blood pressure (BP) (0.2-0.8g/kg, i.v. or 2-4g/kg oral) and vasocontraction. Single Yahom doses (3g) given to healthy volunteers had no effect on cutaneous blood flow, ECG or systolic BP although marginally increased diastolic BP was claimed. (B) Yahom (2-4g/kg) completely inhibited gastric acid secretion evoked by gastric secretagogues. (C) Toxicity: Chronic oral doses of selected Yahoms to rodents (0.001-1g/kg) supports its status as generally regarded as safe.
CONCLUSIONS: Most studies supported declared objectives relating to perceived Yahom actions, but lacked background demonstrating clinical efficacy, and mechanistic data that would validate conclusions. Our study suggests that research into traditional medicinal herbs needs underpinning by appropriate clinical interventions and pharmacovigilance, thereby optimising efficacy and minimizing toxicity by combining traditional wisdom and modern testing.
MATERIALS AND METHODS: The information on the medicinal plants was obtained from interview with a traditional medicinal man. The traditional uses and remedies were documented. The literature searches were carried out for the evaluation on the current status of investigations on these plants.
RESULTS: In this study, we present 16 species of plants, which are commonly used among the Jah Hut people to cure some common diseases.
DISCUSSION: This study is important to preserve the knowledge of medicinal plants used by Jah Hut people. The surveys of phytopharmacological literatures of these plants have great pharmacological and ethnobotanical significance.
AIM OF THE REVIEW: The present review aimed to comprehensively summarise the current researches on the traditional and scientific applications of the genus Pterocarpus with regard to the phytochemical content, in vivo and in vitro bioactivities, as well as clinical evidence that may be useful for future drug development.
MATERIALS AND METHODS: Information about the Pterocarpus genus were obtained from local classic herbal literature and electronic databases, such as PubMed, Scopus, and Google Scholar. The scientific name of the species and its synonyms were checked with the information of The Plant List. Additionally, clinical trial results were obtained from the Cochrane library.
RESULTS: Several phytochemical constituents of the plants, e.g., flavonoids, isoflavonoids, terpenoids, phenolic acids, and fatty acids have been reported. There are about 11 species of Pterocarpus that have been scientifically studied for their biological activities, including anti-inflammatory, anti-microbial, analgesic, and anti-hyperglycemic. Of which, the anti-hyperglycemic activity of the extracts and phytochemicals of P. indicus and P. marsupium is particularly remarkable, allowing them to be further studied under clinical trial.
CONCLUSION: The present review has provided an insight into the traditional applications of the plants and some of them have been validated by scientific evidence, particularly their applications as anti-inflammatory and anti-microbial agents. In addition, the genus has demonstrated notable anti-diabetic activity in various clinical trials.
METHODS: A structured electronic search on worldwide accepted scientific databases (Web of Science, PubMed, Google Scholar, Science Direct, SciFinder, Wiley Online Library) was carried out to compile the relevant information. Some information was obtained from books and database on medicinal plants used in various countries.
RESULTS: About 60 metabolites, mainly polyphenols, and terpenoids have been isolated and identified. However, most of the reported pharmacological studies were based on crude extracts, and only a few of those isolated metabolites, particularly zerumbone have been investigated for biological and pharmacological activities. Many of the mechanistic studies to understand the pharmacological effects of the plant are limited by many considerations with regard to design, experimentation and interpretation.
CONCLUSION: The bioactive metabolites should be further investigated on their safety and more elaborate preclinical studies before clinical trials can be undertaken.