Displaying publications 21 - 40 of 275 in total

Abstract:
Sort:
  1. Ahmed Z, Hwang SJ, Shin SK, Song J
    J Hazard Mater, 2010 Apr 15;176(1-3):849-55.
    PMID: 20031312 DOI: 10.1016/j.jhazmat.2009.11.114
    The yeast strain Candida tropicalis was used for the biodegradation of gaseous toluene. Toluene was effectively treated by a liquid culture of C. tropicalis in a bubble-column bioreactor, and the toluene removal efficiency increased with decreasing gas flow rate. However, toluene mass transfer from the gas-to-liquid phase was a major limitation for the uptake of toluene by C. tropicalis. The toluene removal efficiency was enhanced when granular activated carbon (GAC) was added as a fluidized material. The GAC fluidized bioreactor demonstrated toluene removal efficiencies ranging from 50 to 82% when the inlet toluene loading was varied between 13.1 and 26.9 g/m(3)/h. The yield value of C. tropicalis ranged from 0.11 to 0.21 g-biomass/g-toluene, which was substantially lower than yield values for bacteria reported in the literature. The maximum elimination capacity determined in the GAC fluidized bioreactor was 172 g/m(3)/h at a toluene loading of 291 g/m(3)/h. Transient loading experiments revealed that approximately 50% of the toluene introduced was initially adsorbed onto the GAC during an increased loading period, and then slowly desorbed and became available to the yeast culture. Hence, the fluidized GAC mediated in improving the gas-to-liquid mass transfer of toluene, resulting in a high toluene removal capacity. Consequently, the GAC bubble-column bioreactor using the culture of C. tropicalis can be successfully applied for the removal of gaseous toluene.
  2. Akpan UG, Hameed BH
    J Hazard Mater, 2009 Oct 30;170(2-3):520-9.
    PMID: 19505759 DOI: 10.1016/j.jhazmat.2009.05.039
    This paper presents the review of the effects of operating parameters on the photocatalytic degradation of textile dyes using TiO2-based photocatalysts. It further examines various methods used in the preparations of the considered photocatalysts. The findings revealed that various parameters, such as the initial pH of the solution to be degraded, oxidizing agents, temperature at which the catalysts must be calcined, dopant(s) content and catalyst loading exert their individual influence on the photocatalytic degradation of any dye in wastewaters. It was also found out that sol-gel method is widely used in the production of TiO2-based photocatalysts because of the advantage derived from its ability to synthesize nanosized crystallized powder of the photocatalysts of high purity at relatively low temperature.
  3. Akyil S, Yusof AM
    J Hazard Mater, 2007 Jun 1;144(1-2):564-9.
    PMID: 17141412
    Concentrations of uranium and thorium in seawater, sediment and some marine species taken from along the coastal areas of Malaysia were determined spectrophotometrically. The uranium and thorium concentrations in seawater were found to vary ranging from 1.80 to 4.1 and 0.14 to 0.88 microg/L, respectively. The concentration of uranium in sediment samples was reported to range from 3.00 to 6.60 microg/g while those of thorium were slightly lower ranging from 0.01 to 0.68 microg/g. The uptake of uranium and thorium in marine species was found to be rather low. Similar variations in total alpha activities in samples were also observed with the total alpha activities relatively lower than the beta activities in most samples.
  4. Al-Baldawi IA, Abdullah SR, Anuar N, Suja F, Idris M
    J Hazard Mater, 2013 May 15;252-253:64-9.
    PMID: 23500791 DOI: 10.1016/j.jhazmat.2013.01.067
    In this study, bulrush (Scirpus grossus) was subjected to a 72 day phytotoxicity test to assess its ability to phytoremediate diesel contamination in simulated wastewater at different concentrations (0, 8700, 17,400 and 26,100mg/L). Diesel degradation by S. grossus was measured in terms of total petroleum hydrocarbon (TPH-D). The TPH-D concentration in the synthetic wastewater was determined with the liquid-liquid extraction method and gas chromatography. S. grossus was found to reduce TPH-D by 70.0 and 80.2% for concentrations of 8700 mg/L and 17,400mg/L, respectively. At a diesel concentration of 26,100mg/L, S. grossus died after 14 days. Additionally, the biomass of S. grossus plants was found to increase throughout the phytotoxicity test, confirming the ability of the plant to survive in water contaminated with diesel at rates of less than 17,400mg/L.
  5. Al-Gheethi A, Noman E, Saphira Radin Mohamed RM, Talip B, Vo DN, Algaifi HA
    J Hazard Mater, 2021 10 05;419:126500.
    PMID: 34214856 DOI: 10.1016/j.jhazmat.2021.126500
    The present study aimed to investigate the removal efficiency of cephalexin (CFX) by a novel Cu-Zn bionanocomposite biosynthesized in the secondary metabolic products of Aspergillus arenarioides EAN603 with pumpkin peels medium (CZ-BNC-APP). The optimization study was performed based on CFX concentrations (1, 10.5 and 20 ppm); CZ-BNC-APP dosage (10, 55 and 100 mg/L); time (10, 55 and 100 min), temperature (20, 32.5 and 45 °C). The artificial neural network (ANN) model was used to understand the CFX behavior for the factors affecting removal process. The CZ-BNC-APP showed an irregular shape with porous structure and size between 20 and 80 nm. The FTIR detected CC, C-O and OH groups. ANN model revealed that CZ-BNC-APP dosage exhibited the vital role in the removal process, while the removal process having a thermodynamic nature. The CFX removal was optimized with 12.41 ppm CFX, 60.60 mg/L of CZ-BNC-APP, after 97.55 min and at 35 °C, the real maximum removal was 95.53% with 100.52 mg g-1 of the maximum adsorption capacity and 99.5% of the coefficient. The adsorption of CFX on CZ-BNC-APP was fitted with pseudo-second-order model and both Langmuir and Freundlich isotherms models. These findings revealed that CZ-BNC-APP exhibited high potential to remove CFX.
  6. Al-Gheethi A, Noman E, Radin Mohamed RMS, Ismail N, Bin Abdullah AH, Mohd Kassim AH
    J Hazard Mater, 2019 03 05;365:883-894.
    PMID: 30497042 DOI: 10.1016/j.jhazmat.2018.11.068
    Biodegradation of pharmaceuticals active compounds (PACs) in secondary effluents by using B. subtilis 2012WTNC as a function of β-lactamase was optimized using response surface methodology (RSM) designed by central composite design (CCD). Four factors including initial concentration of bacteria (1-6 log10 CFU mL-1), incubation period (1-14 days), incubation temperature (20-40 °C) and initial concentration of PACs (1-5 mg L-1) were investigated. The optimal operating factors for biodegradation process determined using response surface methodology (RSM) was recorded with 5.57 log10 CFU mL-1 of B. subtilis, for 10.38 days, at 36.62 °C and with 4.14 mg L-1 of (cephalexin/amoxicillin) with R2 coefficient of 0.99. The biodegradation was 83.81 and 93.94% respectively. The relationship among the independent variables was significant (p 
  7. Al-Hamadani YA, Yusoff MS, Umar M, Bashir MJ, Adlan MN
    J Hazard Mater, 2011 Jun 15;190(1-3):582-7.
    PMID: 21507572 DOI: 10.1016/j.jhazmat.2011.03.087
    Landfill leachate is a heavily polluted and a likely hazardous liquid that is produced as a result of water infiltration through solid wastes generated industrially and domestically. This study investigates the potential of using psyllium husk as coagulant and coagulant aid for the treatment of landfill leachate. Psyllium husk has been tested as primary coagulant and as coagulant aid with poly-aluminum chloride (PACl) and aluminum sulfate (alum). As primary coagulant, the optimum dosage and pH for PACl were 7.2 and 7.5 g/L, respectively, with removal efficiencies of 55, 80 and 95% for COD, color and TSS, respectively. For alum, the optimum conditions were 11 g/L alum dosage and pH 6.5 with removal efficiencies of 58, 79 and 78% for COD, color and TSS, respectively. The maximum removal efficiencies of COD, color and TSS were 64, 90 and 96%, respectively, when psyllium husk was used as coagulant aid with PACl. Based on the results, psyllium husk was found to be more effective as coagulant aid with PACl in the removal of COD, color and TSS as compared to alum. Zeta potential test was carried out for leachate, PACl, alum and psyllium husk before and after running the jar test to enhance the results of the jar test experiments.
  8. Al-Qaim FF, Mussa ZH, Othman MR, Abdullah MP
    J Hazard Mater, 2015 Dec 30;300:387-397.
    PMID: 26218306 DOI: 10.1016/j.jhazmat.2015.07.007
    The electrochemical oxidation of caffeine, a widely over-the-counter stimulant drug, has been investigated in effluent wastewater and deionized water (DIW) using graphite-poly vinyl chloride (PVC) composite electrode as anode. Effects of initial concentration of caffeine, chloride ion (Cl(-)) loading, presence of hydrogen peroxide (H2O2), sample volume, type of sample and applied voltage were determined to test and to validate a kinetic model for the oxidation of caffeine by the electrochemical oxidation process. The results revealed that the electrochemical oxidation rates of caffeine followed pseudo first-order kinetics, with rate constant values ranged from 0.006 to 0.23 min(-1) depending on the operating parameters. The removal efficiency of caffeine increases with applied voltage very significantly, suggesting a very important role of mediated oxidation process. However, the consumption energy was considered during electrochemical oxidation process. In chloride media, removal of caffeine is faster and more efficiently, although occurrence of more intermediates takes place. The study found that the adding H2O2 to the NaCl solution will inhibit slightly the electrochemical oxidation rate in comparison with only NaCl in solution. Liquid chromatography-time of flight-mass spectrometry (LC-TOF-MS) technique was applied to the identification of the by-products generated during electrochemical oxidation, which allowed to construct the proposed structure of by-products.
  9. Alam MZ, Mansor MF, Jalal KC
    J Hazard Mater, 2009 Mar 15;162(2-3):708-15.
    PMID: 18599210 DOI: 10.1016/j.jhazmat.2008.05.085
    Optimization of decolorization of methylene blue (MB) dye by lignin peroxidase (LiP) enzyme produced by white-rot fungus Phanerochaete chrysosporium using sewage treatment plant (STP) sludge as a major substrate was carried out in the laboratory. Optimization by the one-factor-at-a-time (OFAT) and statistical approach was carried out to determine the process conditions on optimum decolorization of MB dye using LiP enzyme in static mode. The OFAT method indicated that the optimum conditions for decolorization of MB dye (removal: 14-40%) was at temperature 55 degrees C, pH 5.0 with hydrogen peroxide (H(2)O(2)) concentration 4.0mM, MB dye concentration 20mg/L and LiP activity 0.487U/ml. The addition of veratryl alcohol to the reaction mixtures did not contribute any further increases in decolorization. The initial concentration of MB and the activity of LiP enzyme were further optimized using response surface methodology (RSM). The contour and surface plots suggested that the optimum initial concentration of MB and LiP activity predicted were 15mg/L and 0.687U/ml, respectively for the removal of 65%. The validation of the model showed that the decolorization process gave the higher removal of 90% in agitation mode compared to the static mode with 65% for 60min of incubation time by LiP enzyme.
  10. Ali Noman E, Al-Gheethi A, Saphira Radin Mohamed RM, Talip BA, Hossain MS, Ali Hamood Altowayti W, et al.
    J Hazard Mater, 2021 Sep 05;417:126040.
    PMID: 34000703 DOI: 10.1016/j.jhazmat.2021.126040
    In this article, the removal of cephalexin (CFX) antibiotic from non-clinical environment is reviewed. Adsorption and photocatalytic degradation techniques are widely used to remove CFX from waters and wastewaters, the combination of these methods is becoming more common for CFX removal. The treatment methods of CFX has not been reviewed before, the present article aim is to organize the scattered available information regarding sustainable approaches for CFX removal from non-clinical environment. These include adsorption by nanoparticles, bacterial biomass, biodegradation by bacterial enzymes and the photocatalysis using different catalysts and Photo-Fenton photocatalysis. The metal-organic frameworks (MOFs) appeared to have high potential for CFX degradation. It is evident from the recently papers reviewed that the effective methods could be used in place of commercial activated carbon. The widespread uses of photocatalytic degradation for CFX remediation are strongly recommended due to their engineering applicability, technical feasibility, and high effectiveness. The adsorption capacity of the CFX is ranging from 7 mg CFX g-1 of activated carbon nanoparticles to 1667 mg CFX g-1 of Nano-zero-valent iron from Nettle. In contrast, the photo-degradation was 45% using Photo-Fenton while has increased to 100% using heterogeneous photoelectro-Fenton (HPEF) with UVA light using chalcopyrite catalyst.
  11. Alwash AH, Abdullah AZ, Ismail N
    J Hazard Mater, 2012 Sep 30;233-234:184-93.
    PMID: 22831996 DOI: 10.1016/j.jhazmat.2012.07.021
    A new heterogeneous catalyst for sonocatalytic degradation of amaranth dye in water was synthesized by introducing titania into the pores of zeolite (NaY) through ion exchange method while Fe (III) was immobilized on the encapsulated titanium via impregnation method. XRD results could not detect any peaks for titanium oxide or Fe(2)O(3) due to its low loading. The UV-vis analysis proved a blue shift toward shorter wavelength after the loading of Ti into NaY while a red shift was detected after the loading of Fe into the encapsulated titanium. Different reaction variables such as TiO(2) content, amount of Fe, pH values, amount of hydrogen peroxide, catalyst loading and the initial dye concentration were studied to estimate their effect on the decolorization efficiency of amaranth. The maximum decolorization efficiency achieved was 97.5% at a solution pH of 2.5, catalyst dosage of 2 g/L, 20 mmol/100 mL of H(2)O(2) and initial dye concentration of 10 mg/L. The new heterogeneous catalyst Fe/Ti-NaY was a promising catalyst for this reaction and showed minimum Fe leaching at the end of the reaction.
  12. Anjum H, Johari K, Appusamy A, Gnanasundaram N, Thanabalan M
    J Hazard Mater, 2019 11 05;379:120673.
    PMID: 31254791 DOI: 10.1016/j.jhazmat.2019.05.066
    In this study, the impact of different oxidizing agents on the structural integrity of activated carbon (AC) and multiwalled carbon nanotubes (MWCNTs) was studied for the removal of BTX from aqueous solution. Seven different combinations of green oxidizing agents (mild organic acids) in conjugation with NaOCl (basic oxidizing agent) were used. The modified adsorbents were analyzed by Brunauer, Emmett, and Teller (BET) surface area analyzer, Fourier transform infrared spectroscopy (FTIR), Boehm titration, Raman spectroscopy, thermal gravimetric analysis (TGA), x-ray diffraction (XRD), zeta potential, and variable pressure field emission scanning electron microscope (VPFESEM). The results suggested that the carbonaceous sorbents modified with combination of citric acid tartaric acid, malic acid and salicylic acid (CTMS-I) showed increased surface area (O-AC: 871.67 m2/g, O-MWCNTs: 336.37 m2/g) and total pore volume (O-AC: 0.59 cm3/g, O-MWCNTs: 0.04 cm3/g), with the significantly improved thermal stability. Preliminary batch adsorption experiments conducted using the present prepared O-AC and O-MWCNTs, showed an improved performance towards the adsorption of BTX, compared with other available reported adsorbents in the literature.
  13. Anwar MN, Shabbir M, Tahir E, Iftikhar M, Saif H, Tahir A, et al.
    J Hazard Mater, 2021 08 15;416:125851.
    PMID: 34492802 DOI: 10.1016/j.jhazmat.2021.125851
    This study examines point and non-point sources of air pollution and particulate matter and their associated socioeconomic and health impacts in South Asian countries, primarily India, China, and Pakistan. The legislative frameworks, policy gaps, and targeted solutions are also scrutinized. The major cities in these countries have surpassed the permissible limits defined by WHO for sulfur dioxide, carbon monoxide, particulate matter, and nitrogen dioxide. As a result, they are facing widespread health problems, disabilities, and causalities at extreme events. Populations in these countries are comparatively more prone to air pollution effects because they spend more time in the open air, increasing their likelihood of exposure to air pollutants. The elevated level of air pollutants and their long-term exposure increases the susceptibility to several chronic/acute diseases, i.e., obstructive pulmonary diseases, acute respiratory distress, chronic bronchitis, and emphysema. More in-depth spatial-temporal air pollution monitoring studies in China, India, and Pakistan are recommended. The study findings suggest that policymakers at the local, national, and regional levels should devise targeted policies by considering all the relevant parameters, including the country's economic status, local meteorological conditions, industrial interests, public lifestyle, and national literacy rate. This approach will also help design and implement more efficient policies which are less likely to fail when brought into practice.
  14. Arifin MH, Kayode JS, Ismail MKI, Abdullah AM, Embrandiri A, Nazer NSM, et al.
    J Hazard Mater, 2021 03 15;406:124282.
    PMID: 33199149 DOI: 10.1016/j.jhazmat.2020.124282
    Environmental hazards, industrial, and municipal wastes geochemical and geophysical assessments were carried out at an industrial waste disposal (IWD) site at Bukit Kepong, Kuala Lumpur, Malaysia. RES2-D geophysical method was applied, capable of identification and quantification of the industrial wastes; buried hazardous materials (BHM) and their effects on the subsurface stratum, from the moderately saturated zones, to fully saturated zones housing the aquifer units underneath the water table. Six RES2-D survey profiles were respectively acquired along E-W, and N-S directions. The perpendicular arrangement of the RES2-D survey lines, was tenaciously designed to make possible, the industrial waste materials (IWM)and municipal solid waste (MSW) quantification, with sufficient length of survey lines set at 200 m, and electrode spacing of 5 m, to cover as much details segments of the IWM and MSW as possible. The six RES2-D inversion results, helped in the subsurface stratum classification into three layers, namely; soft layers, which encompasses the waste materials, with varied resistivity values i.e., 0-100 Ω-m, at 10-15 m depths. The consolidated layers produced varied resistivity values i.e., 101-400 Ω-m, at 15-20 m depths. The bedrock has the highest resistivity values i.e., 401-2000 Ω-m, at depths > 20 m. The estimated volume of the waste materials was 312,000 m 3, using 3-D Oasis Montaj modeling via rectangular prism model generated from the inverted RES2-D. Results from the geochemical analysis helped in the validation of the site as a potential contaminated zone with severe health effects.
  15. Aroua MK, Yin CY, Lim FN, Kan WL, Daud WM
    J Hazard Mater, 2009 Jul 30;166(2-3):1526-9.
    PMID: 19168286 DOI: 10.1016/j.jhazmat.2008.11.033
    The effects of polyethyleneimine (PEI) impregnation on the Pb(2+) adsorption kinetics of palm shell-activated carbon and pH profile of bulk solution were investigated. Adsorption data were fitted to four established adsorption kinetics models, namely, pseudo-first-order, pseudo-second-order, Elovich equation and intraparticle diffusion. It was found that PEI impregnation at 16.68 and 29.82 wt% PEI/AC increased the Pb(2+) uptake rate while the opposite was observed for PEI impregnation at 4.76 and 8.41 wt% PEI/AC. The increased uptake rates were due to higher concentration of PEI molecules on the surface of clogged pores as well as varying pore volumes. The adsorption kinetics data fitted the pseudo-second-order model better than the pseudo-first-order model, implying chemisorption was the rate-controlling step. The bulk solution pH generally showed an increasing trend from the use of virgin to PEI-impregnated activated carbon.
  16. Aroua MK, Zuki FM, Sulaiman NM
    J Hazard Mater, 2007 Aug 25;147(3):752-8.
    PMID: 17339078
    This study deals with the removal of chromium species from aqueous dilute solutions using polymer-enhanced ultrafiltration (PEUF) process. Three water soluble polymers, namely chitosan, polyethyleneimine (PEI) and pectin were selected for this study. The ultrafiltration studies were carried out using a laboratory scale ultrafiltration system equipped with 500,000 MWCO polysulfone hollow fiber membrane. The effects of pH and polymer composition on rejection coefficient and permeate flux at constant pressure have been investigated. For Cr(III), high rejections approaching 100% were obtained at pH higher than 7 for the three tested polymers. With chitosan and pectin, Cr(VI) retention showed a slight increase with solution pH and did not exceed a value of 50%. An interesting result was obtained with PEI. The retention of Cr(VI) approached 100% at low pH and decreased when the pH was increased. This behavior is opposite to what one can expect in the polymer-enhanced ultrafiltration of heavy metals. Furthermore, the concentration of polymer was found to have little effect on rejection. Permeate flux remained almost constant around 25% of pure water flux.
  17. Atarod P, Khlaife E, Aghbashlo M, Tabatabaei M, Hoang AT, Mobli H, et al.
    J Hazard Mater, 2021 04 05;407:124369.
    PMID: 33160782 DOI: 10.1016/j.jhazmat.2020.124369
    This study was set up to model and optimize the performance and emission characteristics of a diesel engine fueled with carbon nanoparticle-dosed water/‎diesel emulsion fuel using a combination of soft computing techniques. Adaptive neuro-fuzzy inference system tuned by particle ‎swarm algorithm was used for modeling the performance and emission parameters of the engine, while optimization of the engine operating parameters and the fuel composition was conducted via multiple-objective particle ‎swarm algorithm. The model input variables were: injection timing (35-41° CA BTDC), engine load (0-100%), nanoparticle dosage (0-150 μM), and water content (0-3 wt%). The model output variables included: brake specific fuel consumption, brake thermal efficiency, as well as carbon monoxide, carbon dioxide, nitrogen oxides, and unburned hydrocarbons emission concentrations. The training and testing of the modeling system were performed on the basis of 60 data patterns obtained from the experimental trials. The effects of input variables on the performance and emission characteristics of the engine were thoroughly analyzed and comprehensively discussed as well. According to the experimental results, injection timing and engine load could significantly affect all the investigated performance and emission parameters. Water and nanoparticle addition to diesel could markedly affect some performance and emission parameters. The modeling system could predict the output parameters with an R2 > 0.93, MSE 
  18. Azami MS, Jalil AA, Hassan NS, Hussain I, Fauzi AA, Aziz MAA
    J Hazard Mater, 2021 07 15;414:125524.
    PMID: 33647620 DOI: 10.1016/j.jhazmat.2021.125524
    In this work, fibrous silica-titania (FST) was successfully prepared by the microemulsion method prior to the addition of three types of carbonaceous materials: graphitic-carbon nitride, g-C3N4 (CN), graphene nanoplatelets (GN), and multi-wall carbon nanotubes, MWCNT (CNT), via a solid-state microwave irradiation technique. The catalysts were characterized using XRD, FESEM, TEM, FTIR, UV-Vis DRS, N2 adsorption-desorption, XPS and ESR, while their photoactivity was examined on the degradation of toxic 2-chlorophenol (2-CP). The result demonstrated that the initial reaction rate was in the following order: CNFST (5.1 × 10-3 mM min-1) > GNFST (2.5 × 10-3 mM min-1) > CNTFST (2.3 × 10-3 mM min-1). The best performance was due to the polymeric structure of g-C3N4 with a good dispersion of C and N on the surface FST. This dispersion contributed towards an appropriate quantity of defect sites, as a consequence of the greater interaction between g-C3N4 and the FST support, that led to narrowed of band gap energy (2.98 eV to 2.10 eV). The effect of scavenger and ESR studies confirmed that the photodegradation over CNFST occurred via a Z-scheme mechanism. It is noteworthy that the addition of green carbonaceous materials on the FST markedly enhanced the photodegradation of toxic 2-CP.
  19. Aziz FFA, Jalil AA, Hassan NS, Hitam CNC, Rahman AFA, Fauzi AA
    J Hazard Mater, 2021 Jan 05;401:123277.
    PMID: 33113710 DOI: 10.1016/j.jhazmat.2020.123277
    Multiple contaminants including heavy metals and phenolic compounds are normally co-exist in wastewater, which caused the treatment process is rather complicated. Herein, the synergistic photoredox of Cr(VI) and p-cresol (pC) by innovative fibrous silica zirconia (FSZr) photocatalyst was reported. The high surface area of FSZr comprised of microspheres with a bicontinuous concentric lamella structure morphology consisted of silica, while its core consisted of ZrO2 structure. The rearrangement of FSZr framework increased the crystallinity, formed Si-O-Zr bonds and narrowed the band gap of ZrO2 for enhanced of photoredox of Cr(VI) and pC. Compared to the reaction, the photoredox efficiency of FSZr for removing Cr(VI) and pC in simultaneous system was found to be 96 % and 59 %, respectively which are higher than that in its single system owing to the efficient electron-hole charge separation. Phenolic compound with high degree of electron donating group gave beneficial effect to photoreduction of Cr(VI). Consequently, a proposed mechanism involving multi-photoredox pathway were proposed based on photoredox reaction and scavengers studies. FSZr sustained the simultaneous photoredox activities after five runs demonstrating its possibility to be use in the wastewater treatment of various pollutants.
  20. Aziz SQ, Aziz HA, Yusoff MS, Bashir MJ
    J Hazard Mater, 2011 May 15;189(1-2):404-13.
    PMID: 21420786 DOI: 10.1016/j.jhazmat.2011.02.052
    In this study, landfill leachate was treated by using the sequencing batch reactor (SBR) process. Two types of the SBR, namely non-powdered activated carbon and powdered activated carbon (PAC-SBR) were used. The influence of aeration rate and contact time on SBR and PAC-SBR performances was investigated. Removal efficiencies of chemical oxygen demand (COD), colour, ammoniacal nitrogen (NH(3)-N), total dissolved salts (TDS), and sludge volume index (SVI) were monitored throughout the experiments. Response surface methodology (RSM) was applied for experimental design, analysis and optimization. Based on the results, the PAC-SBR displayed superior performance in term of removal efficiencies when compared to SBR. At the optimum conditions of aeration rate of 1L/min and contact time of 5.5h the PAC-SBR achieved 64.1%, 71.2%, 81.4%, and 1.33% removal of COD, colour, NH(3)-N, and TDS, respectively. The SVI value of PAC-SBR was 122.2 mL/g at optimum conditions.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links