Displaying publications 21 - 40 of 159 in total

Abstract:
Sort:
  1. Toopkanloo SP, Tan TB, Abas F, Alharthi FA, Nehdi IA, Tan CP
    Nanomaterials (Basel), 2020 Dec 05;10(12).
    PMID: 33291386 DOI: 10.3390/nano10122432
    This study used highly lipophilic agents with an aim to increase the oxidant inhibitory activity and enhance photothermal stability of a novel mixed soy lecithin (ML)-based liposome by changing the composition of formulation within the membrane. Specifically, the development and optimization of the liposome intended for improving Trolox equivalent antioxidant capacity (TEAC) value and %TEAC loss was carried out by incorporating a natural antioxidant, quercetin (QU). In this context, a focus was set on QU encapsulation in ML-based liposomes and the concentration-dependent solubility of QU was investigated and calculated as encapsulation efficiency (EE). To explore the combined effects of the incorporation of plant sterols on the integrity and entrapment capacity of mixed phospholipid vesicles, conjugation of two types of phytosterols (PSs), namely β-sitosterol (βS) and stigmasterol (ST), to mixed membranes at different ratios was also performed. The EE measurement revealed that QU could be efficiently encapsulated in the stable ML-based liposome using 0.15 and 0.1 g/100 mL of βS and ST, respectively. The aforementioned liposome complex exhibited a considerable TEAC (197.23%) and enhanced TEAC loss (30.81%) when exposed to ultraviolet (UV) light (280-320 nm) over a 6 h duration. It appeared that the presence and type of PSs affect the membrane-integration characteristics as well as photodamage transformation of the ML-based liposome. The association of QU with either βS or ST in the formulation was justified by their synergistic effects on the enhancement of the EE of liposomes. Parallel to this, it was demonstrated that synergistic PS effects could be in effect in the maintenance of membrane order of the ML-based liposome. The findings presented in this study provided useful information for the development and production of stable QU-loaded ML-based liposomes for food and nutraceutical applications and could serve as a potential mixed lipids-based delivery system in the disease management using antioxidant therapy.
  2. Mohamad Kasim AS, Ariff AB, Mohamad R, Wong FWF
    Nanomaterials (Basel), 2020 Dec 10;10(12).
    PMID: 33321788 DOI: 10.3390/nano10122475
    Silver nanoparticles (AgNPs) have been found to have extensive biomedical and biological applications. They can be synthesised using chemical and biological methods, and coated by polymer to enhance their stability. Hence, the changes in the physico-chemical characteristics of AgNPs must be scrutinised due to their importance for biological activity. The UV-Visible absorption spectra of polyethylene glycol (PEG) -coated AgNPs displayed a distinctive narrow peak compared to uncoated AgNPs. In addition, High-Resolution Transmission Electron Microscopy analysis revealed that the shapes of all AgNPs, were predominantly spherical, triangular, and rod-shaped. Fourier-Transform Infrared Spectroscopy analysis further confirmed the role of PEG molecules in the reduction and stabilisation of the AgNPs. Moreover, dynamic light scattering analysis also revealed that the polydispersity index values of PEG-coated AgNPs were lower than the uncoated AgNPs, implying a more uniform size distribution. Furthermore, the uncoated and PEG-coated biologically synthesised AgNPs demonstrated antagonisms activities towards tested pathogenic bacteria, whereas no antagonism activity was detected for the chemically synthesised AgNPs. Overall, generalisation on the interrelations of synthesis methods, PEG coating, characteristics, and antimicrobial activity of AgNPs were established in this study.
  3. Aziz SB, Hassan AQ, Mohammed SJ, Karim WO, Kadir MFZ, Tajuddin HA, et al.
    Nanomaterials (Basel), 2019 Feb 06;9(2).
    PMID: 30736346 DOI: 10.3390/nano9020216
    : In this work the influence of carbon nano-dots (CNDs) on absorption of ultra violet (UV) spectra in hybrid PVA based composites was studied. The FTIR results reveal the complex formation between PVA and CNDs. The shifting was observed in XRD spectrum of PVA:CNDs composites compared to pure PVA. The Debye-Scherrer formula was used to calculate the crystallite size of CNDs and crystalline phases of pure PVA and PVA:CNDs composites. The FESEM images emphasized the presence and dispersion of C-dots on the surface of the composite samples. From the images, a strong and clear absorption was noticed in the spectra. The strong absorption that appeared peaks at 280 nm and 430 nm can be ascribed to the n-π* and π-π* transitions, respectively. The absorption edge shifted to lower photon energy sides with increasing CNDs. The luminescence behavior of PVA:CNDs composite was confirmed using digital and photo luminescence (PL) measurements. The optical dielectric constant which is related to the density of states was studied and the optical band gap was characterized accurately using optical dielectric loss parameter. The Taucs model was used to determine the type of electronic transition in the samples.
  4. Almessiere MA, Trukhanov AV, Slimani Y, You KY, Trukhanov SV, Trukhanova EL, et al.
    Nanomaterials (Basel), 2019 Feb 04;9(2).
    PMID: 30720737 DOI: 10.3390/nano9020202
    In this work, Sr0.3Ba0.4Pb0.3Fe12O19/(CuFe₂O₄)x (x = 2, 3, 4, and 5) as strongly exchange-coupled nanosized ferrites were fabricated using a one-pot sol⁻gel combustion method (citrate sol-gel method). The X-ray diffraction (XRD) powder patterns of the products confirmed the occurrence of pure, exchange-coupled ferrites. Frequency dependencies of the microwave characteristics (MW) were investigated using a co-axial method. The non-linear behavior of the MW with the composition transformation may be due to different degrees of Fe ion oxidation on the spinel/hexaferrite grain boundaries and strong exchange coupling during the hard and soft phases.
  5. Matmin J, Jalani MA, Osman H, Omar Q, Ab'lah N, Elong K, et al.
    Nanomaterials (Basel), 2019 Feb 14;9(2).
    PMID: 30769911 DOI: 10.3390/nano9020264
    The photochemical synthesis of two-dimensional (2D) nanostructured from semiconductor materials is unique and challenging. We report, for the first time, the photochemical synthesis of 2D tin di/sulfide (PS-SnS₂-x, x = 0 or 1) from thioacetamide (TAA) and tin (IV) chloride in an aqueous system. The synthesized PS-SnS₂-x were characterized by X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), a particle size distribution analyzer, X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), thermal analysis, UV⁻Vis diffuse reflectance spectroscopy (DR UV⁻Vis), and photoluminescence (PL) spectroscopy. In this study, the PS-SnS₂-x showed hexagonally closed-packed crystals having nanosheets morphology with the average size of 870 nm. Furthermore, the nanosheets PS-SnS₂-x demonstrated reusable photo-degradation of methylene blue (MB) dye as a water pollutant, owing to the stable electronic conducting properties with estimated bandgap (Eg) at ~2.5 eV. Importantly, the study provides a green protocol by using photochemical synthesis to produce 2D nanosheets of semiconductor materials showing photo-degradation activity under sunlight response.
  6. Siddiquee S, Saallah S, Bohari NA, Ringgit G, Roslan J, Naher L, et al.
    Nanomaterials (Basel), 2021 Apr 28;11(5).
    PMID: 33924923 DOI: 10.3390/nano11051142
    The present study reported a facile method for the determination of melamine in milk powder products based on the aggregation of reactant-free 5 nm gold nanoparticles (AuNPs). The strong electrostatic attraction between the positively charged exocyclic amine groups present in the melamine molecule and the negatively charged ions bound to the AuNPs induced aggregation of the AuNPs, resulting in visible color changes that could be seen with the naked eye and monitored by ultraviolet-visible (UV-Vis) absorbance spectra. The method shows high sensitivity with detection limits of 1 × 10-9 M for visual detection and 1 × 10-11 M for UV-Vis analysis, which is far below the safety limit of melamine ingestion in infant formula (1 ppm = 7.9 × 10-6 M) and the detection limit acquired by most AuNP-based melamine detection methods. Good recoveries were obtained over the range of 94.7-95.5% with a relative standard deviation of mean recovery (RSD) ranging from 1.40 to 5.81. The method provides a simple, feasible, fast and real-time detection of melamine adulterants in infant formula by the naked eye, without the aid of advanced instruments.
  7. Ali A, Ali F, Rashedi A, Armghan A, Fajita MRN, Alenezi F, et al.
    Nanomaterials (Basel), 2021 May 13;11(5).
    PMID: 34068218 DOI: 10.3390/nano11051284
    In this work, piezoresistive properties of graphene-multiwalled carbon nanotubes (MWCNTs) composites are investigated, characterized, and compared. Sandwich-type composite piezoresistive pressure-sensitive sensors (Ag/Graphene-MWCNT/Ag) with the same diameters, but different fabrication pressures and thicknesses were fabricated using the mortar and pestle/hydraulic press technique. To produce low-electrical-resistance contacts, both sides of the composite sensors were painted with silver (Ag) paste. All the sensors showed reductions in the direct current (DC) resistance 'R' with an increment in external uniaxial applied pressure. However, it was observed that higher fabrication pressure led to a lower resistance value of the composite, while the thicker samples give lower electrical conductivity and higher resistance than the thinner samples. The experimental data for all composite pressure sensors were in excellent agreement with the simulated results.
  8. Naveen J, Jawaid M, Goh KL, Reddy DM, Muthukumar C, Loganathan TM, et al.
    Nanomaterials (Basel), 2021 May 08;11(5).
    PMID: 34066661 DOI: 10.3390/nano11051239
    The development of armour systems with higher ballistic resistance and light weight has gained considerable attention as an increasing number of countries are recognising the need to build up advanced self-defence system to deter potential military conflicts and threats. Graphene is a two dimensional one-atom thick nanomaterial which possesses excellent tensile strength (130 GPa) and specific penetration energy (10 times higher than steel). It is also lightweight, tough and stiff and is expected to replace the current aramid fibre-based polymer composites. Currently, insights derived from the study of the nacre (natural armour system) are finding applications on the development of artificial nacre structures using graphene-based materials that can achieve high toughness and energy dissipation. The aim of this review is to discuss the potential of graphene-based nanomaterials with regard to the penetration energy, toughness and ballistic limit for personal body armour applications. This review addresses the cutting-edge research in the ballistic performance of graphene-based materials through theoretical, experimentation as well as simulations. The influence of fabrication techniques and interfacial interactions of graphene-based bioinspired polymer composites for ballistic application are also discussed. This review also covers the artificial nacre which is shown to exhibit superior mechanical and toughness behaviours.
  9. Luo Y, Wang J, Wang P, Mai C, Wang J, Yap BK, et al.
    Nanomaterials (Basel), 2021 Jun 18;11(6).
    PMID: 34207371 DOI: 10.3390/nano11061606
    We report the effects of ultraviolet (UV) irradiation and storage on the performance of ZnO-based inverted quantum-dot light-emitting diodes (QLEDs). The effects of UV irradiation on the electrical properties of ZnO nanoparticles (NPs) were investigated. We demonstrate that the charge balance was enhanced by improving the electron injection. The maximum external quantum efficiency (EQE) and power efficiency (PE) of QLEDs were increased by 26% and 143% after UV irradiation for 15 min. In addition, we investigated the storage stabilities of the inverted QLEDs. During the storage period, the electron current from ZnO gradually decreased, causing a reduction in the device current. However, the QLEDs demonstrated improvements in maximum EQE by 20.7% after two days of storage. Our analysis indicates that the suppression of exciton quenching at the interface of ZnO and quantum dots (QDs) during the storage period could result in the enhancement of EQE. This study provides a comprehension of the generally neglected factors, which could be conducive to the realization of high-efficiency and highly storage-stable practical applications.
  10. Hashim UR, Jumahat A, Jawaid M
    Nanomaterials (Basel), 2021 Jun 01;11(6).
    PMID: 34206085 DOI: 10.3390/nano11061468
    Basalt fibre (BF) is one of the most promising reinforcing natural materials for polymer composites that could replace the usage of glass fibre due to its comparable properties. The aim of adding nanofiller in polymer composites is to enhance the mechanical properties of the composites. In theory, the incorporation of high strength and stiffness nanofiller, namely graphene nanoplatelet (GNP), could create superior composite properties. However, the main challenges of incorporating this nanofiller are its poor dispersion state and aggregation in epoxy due to its high surface area and strong Van der Waals forces in between graphene sheets. In this study, we used one of the effective methods of functionalization to improve graphene's dispersion and also introducing nanosilica filler to enhance platelets shear mechanism. The high dispersive silica nanospheres were introduced in the tactoids morphology of stacked graphene nanosheets in order to produce high shear forces during milling and exfoliate the GNP. The hybrid nanofiller modified epoxy polymers were impregnated into BF to evaluate the mechanical properties of the basalt fibre reinforced polymeric (BFRP) system under tensile, compression, flexural, and drop-weight impact tests. In response to the synergistic effect of zero-dimensional nanosilica and two-dimensional graphene nanoplatelets enhanced the mechanical properties of BFRP, especially in Basalt fibre + 0.2 wt% GNP/15 wt% NS (BF-H0.2) with the highest increment in modulus and strength to compare with unmodified BF. These findings also revealed that the incorporation of hybrid nanofiller contributed to the improvement in the mechanical properties of the composite. BF has huge potential as an alternative to the synthetic glass fibre for the fabrication of mechanical components and structures.
  11. Akhtaruzzaman M, Shahiduzzaman M, Amin N, Muhammad G, Islam MA, Rafiq KSB, et al.
    Nanomaterials (Basel), 2021 Jun 22;11(7).
    PMID: 34206518 DOI: 10.3390/nano11071635
    Tungsten disulfide (WS2) thin films were deposited on soda-lime glass (SLG) substrates using radio frequency (RF) magnetron sputtering at different Ar flow rates (3 to 7 sccm). The effect of Ar flow rates on the structural, morphology, and electrical properties of the WS2 thin films was investigated thoroughly. Structural analysis exhibited that all the as-grown films showed the highest peak at (101) plane corresponds to rhombohedral phase. The crystalline size of the film ranged from 11.2 to 35.6 nm, while dislocation density ranged from 7.8 × 1014 to 26.29 × 1015 lines/m2. All these findings indicate that as-grown WS2 films are induced with various degrees of defects, which were visible in the FESEM images. FESEM images also identified the distorted crystallographic structure for all the films except the film deposited at 5 sccm of Ar gas flow rate. EDX analysis found that all the films were having a sulfur deficit and suggested that WS2 thin film bears edge defects in its structure. Further, electrical analysis confirms that tailoring of structural defects in WS2 thin film can be possible by the varying Ar gas flow rates. All these findings articulate that Ar gas flow rate is one of the important process parameters in RF magnetron sputtering that could affect the morphology, electrical properties, and structural properties of WS2 thin film. Finally, the simulation study validates the experimental results and encourages the use of WS2 as a buffer layer of CdTe-based solar cells.
  12. Al-Hada NM, Md Kasmani R, Kasim H, Al-Ghaili AM, Saleh MA, Banoqitah EM, et al.
    Nanomaterials (Basel), 2021 Aug 22;11(8).
    PMID: 34443973 DOI: 10.3390/nano11082143
    In the present work, a thermal treatment technique is applied for the synthesis of CexSn1-xO2 nanoparticles. Using this method has developed understanding of how lower and higher precursor values affect the morphology, structure, and optical properties of CexSn1-xO2 nanoparticles. CexSn1-xO2 nanoparticle synthesis involves a reaction between cerium and tin sources, namely, cerium nitrate hexahydrate and tin (II) chloride dihydrate, respectively, and the capping agent, polyvinylpyrrolidone (PVP). The findings indicate that lower x values yield smaller particle size with a higher energy band gap, while higher x values yield a larger particle size with a smaller energy band gap. Thus, products with lower x values may be suitable for antibacterial activity applications as smaller particles can diffuse through the cell wall faster, while products with higher x values may be suitable for solar cell energy applications as more electrons can be generated at larger particle sizes. The synthesized samples were profiled via a number of methods, such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). As revealed by the XRD pattern analysis, the CexSn1-xO2 nanoparticles formed after calcination reflect the cubic fluorite structure and cassiterite-type tetragonal structure of CexSn1-xO2 nanoparticles. Meanwhile, using FT-IR analysis, Ce-O and Sn-O were confirmed as the primary bonds of ready CexSn1-xO2 nanoparticle samples, whilst TEM analysis highlighted that the average particle size was in the range 6-21 nm as the precursor concentration (Ce(NO3)3·6H2O) increased from 0.00 to 1.00. Moreover, the diffuse UV-visible reflectance spectra used to determine the optical band gap based on the Kubelka-Munk equation showed that an increase in x value has caused a decrease in the energy band gap and vice versa.
  13. Chemmalar S, Intan-Shameha AR, Abdullah CAC, Ab Razak NA, Yusof LM, Ajat M, et al.
    Nanomaterials (Basel), 2021 Aug 02;11(8).
    PMID: 34443820 DOI: 10.3390/nano11081988
    Calcium carbonate has slowly paved its way into the field of nanomaterial research due to its inherent properties: biocompatibility, pH-sensitivity, and slow biodegradability. In our efforts to synthesize calcium carbonate nanoparticles (CSCaCO3NP) from blood cockle shells (Anadara granosa), we developed a simple method to synthesize CSCaCO3NP, and loaded them with gefitinib (GEF) and paclitaxel (PTXL) to produce mono drug-loaded GEF-CSCaCO3NP, PTXL-CSCaCO3NP, and dual drug-loaded GEF-PTXL-CSCaCO3NP without usage of toxic chemicals. Fourier-transform infrared spectroscopy (FTIR) results reveal that the drugs are bound to CSCaCO3NP. Scanning electron microscopy studies reveal that the CSCaCO3NP, GEF-CSCaCO3NP, PTXL-CSCaCO3NP, and GEF-PTXL-CSCaCO3NP are almost spherical nanoparticles, with a diameter of 63.9 ± 22.3, 83.9 ± 28.2, 78.2 ± 26.4, and 87.2 ± 26.7 (nm), respectively. Dynamic light scattering (DLS) and N2 adsorption-desorption experiments revealed that the synthesized nanoparticles are negatively charged and mesoporous, with surface areas ranging from ~8 to 10 (m2/g). Powder X-ray diffraction (PXRD) confirms that the synthesized nanoparticles are aragonite. The CSCaCO3NP show excellent alkalinization property in plasma simulating conditions and greater solubility in a moderately acidic pH medium. The release of drugs from the nanoparticles showed zero order kinetics with a slow and sustained release. Therefore, the physico-chemical characteristics and in vitro findings suggest that the drug loaded CSCaCO3NP represent a promising drug delivery system to deliver GEF and PTXL against breast cancer.
  14. Phoon BL, Lai CW, Pan GT, Yang TC, Juan JC
    Nanomaterials (Basel), 2021 Aug 11;11(8).
    PMID: 34443873 DOI: 10.3390/nano11082041
    A highly mesoporous graphitic carbon nitride g-C3N4 (GCN) has been produced by a template-free method and effectively photodegrade tetracycline (TC) antibiotic under solar light irradiation. The mesoporous GCN (GCN-500) greatly improves the photoactivity (0.0247 min-1) by 2.13 times, as compared to that of bulk GCN (0.0116 min-1). The efficiently strengthened photoactivity is ascribed to the high porosity (117.05 m2/g), and improves the optical absorption under visible light (Eg = 2.65 eV) and good charge carrier separation efficiency. The synthesized mesoporous GCN shows a uniform pore size (~3 nm) distribution. GCN-500 shows large pore volume (0.210 cm3/g) compared to GCN-B (0.083 cm3/g). Besides, the GCN-500 also exhibits good recyclability and photostability for TC photodegradation. In conclusion, GCN-500 is a recyclable photocatalyst for the removal of TC under visible light irradiation.
  15. Fadhel MM, Ali N, Rashid H, Sapiee NM, Hamzah AE, Zan MSD, et al.
    Nanomaterials (Basel), 2021 Sep 12;11(9).
    PMID: 34578683 DOI: 10.3390/nano11092367
    Rhenium Disulfide (ReS2) has evolved as a novel 2D transition-metal dichalcogenide (TMD) material which has promising applications in optoelectronics and photonics because of its distinctive anisotropic optical properties. Saturable absorption property of ReS2 has been utilized to fabricate saturable absorber (SA) devices to generate short pulses in lasers systems. The results were outstanding, including high-repetition-rate pulses, large modulation depth, multi-wavelength pulses, broadband operation and low saturation intensity. In this review, we emphasize on formulating SAs based on ReS2 to produce pulsed lasers in the visible, near-infrared and mid-infrared wavelength regions with pulse durations down to femtosecond using mode-locking or Q-switching technique. We outline ReS2 synthesis techniques and integration platforms concerning solid-state and fiber-type lasers. We discuss the laser performance based on SAs attributes. Lastly, we draw conclusions and discuss challenges and future directions that will help to advance the domain of ultrafast photonic technology.
  16. Shaker LM, Alamiery A, Takriff M, Wan Isahak WNR
    Nanomaterials (Basel), 2021 Aug 26;11(9).
    PMID: 34578506 DOI: 10.3390/nano11092190
    Thermally stable titanium dioxide nanoparticles (TiO2 NPs) doped with erbium ions (Er3+) are characterized by uniformity, low excitation energy, and high surface area. The impregnation methodology was used to enhance the optical properties of TiO2 NPs impregnated with various Er3+ ion contents. The synthesized Er3+/TiO2 samples were characterized by energy dispersive X-ray (EDX), metal mapping, UV-Visible spectrum, field emission scanning electron microscopy (FESEM), and X-ray diffraction (XRD). The Er3+ ions, per our findings, were well-distributed on the TiO2 surface of the anatase phase and there was an insignificant difference in particle size, but there was no change in the particle shapes of the Er3+/TiO2 NPs structure. The maximum band gap degradation occurred with 1.8 wt % of Er3+/TiO2, where the energy gap degraded from 3.13 to 2.63 eV for intrinsic TiO2. The synthesized Er3+/TiO2 samples possess predominantly finely dispersed erbium ion species on the surface. Er3+ ions agglomeration on the surface increased with increasing ions in each sample. We found that 0.6 wt/vol % of Er+3/TiO2 is the best optical coating and produced satisfying results in terms of blocking the transmittance of blue wavelength without reducing the image quality.
  17. Azmi UZM, Yusof NA, Abdullah J, Mohammad F, Ahmad SAA, Suraiya S, et al.
    Nanomaterials (Basel), 2021 Sep 20;11(9).
    PMID: 34578762 DOI: 10.3390/nano11092446
    A portable electrochemical aptamer-antibody based sandwich biosensor has been designed and successfully developed using an aptamer bioreceptor immobilized onto a screen-printed electrode surface for Mycobacterium tuberculosis (M. tuberculosis) detection in clinical sputum samples. In the sensing strategy, a CFP10-ESAT6 binding aptamer was immobilized onto a graphene/polyaniline (GP/PANI)-modified gold working electrode by covalent binding via glutaraldehyde linkage. Upon interaction with the CFP10-ESAT6 antigen target, the aptamer will capture the target where the nano-labelled Fe3O4/Au MNPs conjugated antibody is used to complete the sandwich format and enhance the signal produced from the aptamer-antigen interaction. Using this strategy, the detection of CFP10-ESAT6 antigen was conducted in the concentration range of 5 to 500 ng/mL. From the analysis, the detection limit was found to be 1.5 ng/mL, thereby demonstrating the efficiency of the aptamer as a bioreceptor. The specificity study was carried out using bovine serum albumin (BSA), MPT64, and human serum, and the result demonstrated good specificity that is 7% higher than the antibody-antigen interaction reported in a previous study. The fabricated aptasensor for M. tuberculosis analysis shows good reproducibility with an relative standard deviation (RSD) of 2.5%. Further analysis of M. tuberculosis in sputum samples have shown good correlation with the culture method with 100% specificity and sensitivity, thus making the aptasensor a promising candidate for M. tuberculosis detection considering its high specificity and sensitivity with clinical samples.
  18. Ahmad W, Ahmad Q, Yaseen M, Ahmad I, Hussain F, Mohamed Jan B, et al.
    Nanomaterials (Basel), 2021 Sep 13;11(9).
    PMID: 34578688 DOI: 10.3390/nano11092372
    The current study reports the effect of different wt. ratios of copper oxide nanoparticle (CuO-NPs) and reduced graphene oxide (rGO) as fillers on mechanical, electrical, and thermal properties of waste polystyrene (WPS) matrix. Firstly, thin sheets of WPS-rGO-CuO composites were prepared through solution casting method with different ratios, i.e., 2, 8, 10, 15 and 20 wt.% of CuO-NPs and rGO in WPS matrix. The synthesized composite sheets were characterized by Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray (EDX), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA). The electrical conductance and mechanical strength of the prepared composites were determined by using LCR meter and universal testing machine (UTM). These properties were dependent on the concentrations of CuO-NPs and rGO. Results display that the addition of both fillers, i.e., rGO and CuO-NPs, collectively led to remarkable increase in the mechanical properties of the composite. The incorporation of rGO-CuO: 15% WPS sample, i.e., WPS-rGO-CuO: 15%, has shown high mechanical strength with tensile strength of 25.282 MPa and Young modulus of 1951.0 MPa, respectively. Similarly, the electrical conductance of the same composite is also enhanced from 6.7 × 10-14 to 4 × 10-7 S/m in contrast to WPS at 2.0 × 106 Hz. The fabricated composites exhibited high thermal stability through TGA analysis in terms of 3.52% and 6.055% wt. loss at 250 °C as compared to WPS.
  19. Firdaus RM, Desforges A, Emo M, Mohamed AR, Vigolo B
    Nanomaterials (Basel), 2021 Sep 17;11(9).
    PMID: 34578735 DOI: 10.3390/nano11092419
    Activation is commonly used to improve the surface and porosity of different kinds of carbon nanomaterials: activated carbon, carbon nanotubes, graphene, and carbon black. In this study, both physical and chemical activations are applied to graphene oxide by using CO2 and KOH-based approaches, respectively. The structural and the chemical properties of the prepared activated graphene are deeply characterized by means of scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectrometry and nitrogen adsorption. Temperature activation is shown to be a key parameter leading to enhanced CO2 adsorption capacity of the graphene oxide-based materials. The specific surface area is increased from 219.3 m2 g-1 for starting graphene oxide to 762.5 and 1060.5 m2 g-1 after physical and chemical activation, respectively. The performance of CO2 adsorption is gradually enhanced with the activation temperature for both approaches: for the best performances of a factor of 6.5 and 9 for physical and chemical activation, respectively. The measured CO2 capacities are of 27.2 mg g-1 and 38.9 mg g-1 for the physically and chemically activated graphene, respectively, at 25 °C and 1 bar.
  20. Tan JM, Saifullah B, Kura AU, Fakurazi S, Hussein MZ
    Nanomaterials (Basel), 2018 May 31;8(6).
    PMID: 29857532 DOI: 10.3390/nano8060389
    Four drug delivery systems were formulated by non-covalent functionalization of carboxylated single walled carbon nanotubes using biocompatible polymers as coating agent (i.e., Tween 20, Tween 80, chitosan or polyethylene glycol) for the delivery of levodopa, a drug used in Parkinson's disease. The chemical interaction between the coating agent and carbon nanotubes-levodopa conjugate was confirmed by Fourier transform infrared (FTIR) and Raman studies. The drug release profiles were revealed to be dependent upon the type of applied coating material and this could be further adjusted to a desired rate to meet different biomedical conditions. In vitro drug release experiments measured using UV-Vis spectrometry demonstrated that the coated conjugates yielded a more prolonged and sustained release pattern compared to the uncoated conjugate. Cytotoxicity of the formulated conjugates was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay using normal mouse embryonic fibroblast 3T3 cell line. Compared to the non-coated conjugate, the MTT data indicated that the coating procedure improved the biocompatibility of all systems by 34⁻41% when the concentration used exceeded 100 μg/mL. In conclusion, the comprehensive results of this study suggest that carbon nanotubes-based drug carrier coated with a suitable biomaterial may possibly be a potential nanoparticle system that could facilitate drug delivery to the brain with tunable physicochemical properties.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links