Displaying publications 21 - 40 of 709 in total

Abstract:
Sort:
  1. Uwamahoro R, Sundaraj K, Feroz FS
    Sensors (Basel), 2023 Sep 29;23(19).
    PMID: 37836995 DOI: 10.3390/s23198165
    Neuromuscular electrical stimulation plays a pivotal role in rehabilitating muscle function among individuals with neurological impairment. However, there remains uncertainty regarding whether the muscle's response to electrical excitation is affected by forearm posture, joint angle, or a combination of both factors. This study aimed to investigate the effects of forearm postures and elbow joint angles on the muscle torque and MMG signals. Measurements of the torque around the elbow and MMG of the biceps brachii (BB) muscle were conducted in 36 healthy subjects (age, 22.24 ± 2.94 years; height, 172 ± 0.5 cm; and weight, 67.01 ± 7.22 kg) using an in-house elbow flexion testbed and neuromuscular electrical stimulation (NMES) of the BB muscle. The BB muscle was stimulated while the forearm was positioned in the neutral, pronation, or supination positions. The elbow was flexed at angles of 10°, 30°, 60°, and 90°. The study analyzed the impact of the forearm posture(s) and elbow joint angle(s) on the root-mean-square value of the torque (TQRMS). Subsequently, various MMG parameters, such as the root-mean-square value (MMGRMS), the mean power frequency (MMGMPF), and the median frequency (MMGMDF), were analyzed along the longitudinal, lateral, and transverse axes of the BB muscle fibers. The test-retest interclass correlation coefficient (ICC21) for the torque and MMG ranged from 0.522 to 0.828. Repeated-measure ANOVAs showed that the forearm posture and elbow flexion angle significantly influenced the TQRMS (p < 0.05). Similarly, the MMGRMS, MMGMPF, and MMGMDF showed significant differences among all the postures and angles (p < 0.05). However, the combined main effect of the forearm posture and elbow joint angle was insignificant along the longitudinal axis (p > 0.05). The study also found that the MMGRMS and TQRMS increased with increases in the joint angle from 10° to 60° and decreased at greater angles. However, during this investigation, the MMGMPF and MMGMDF exhibited a consistent decrease in response to increases in the joint angle for the lateral and transverse axes of the BB muscle. These findings suggest that the muscle contraction evoked by NMES may be influenced by the interplay between actin and myosin filaments, which are responsible for muscle contraction and are, in turn, influenced by the muscle length. Because restoring the function of limbs is a common goal in rehabilitation services, the use of MMG in the development of methods that may enable the real-time tracking of exact muscle dimensional changes and activation levels is imperative.
  2. Ali A, Ali H, Saeed A, Ahmed Khan A, Tin TT, Assam M, et al.
    Sensors (Basel), 2023 Sep 07;23(18).
    PMID: 37765797 DOI: 10.3390/s23187740
    The rapid advancements in technology have paved the way for innovative solutions in the healthcare domain, aiming to improve scalability and security while enhancing patient care. This abstract introduces a cutting-edge approach, leveraging blockchain technology and hybrid deep learning techniques to revolutionize healthcare systems. Blockchain technology provides a decentralized and transparent framework, enabling secure data storage, sharing, and access control. By integrating blockchain into healthcare systems, data integrity, privacy, and interoperability can be ensured while eliminating the reliance on centralized authorities. In conjunction with blockchain, hybrid deep learning techniques offer powerful capabilities for data analysis and decision making in healthcare. Combining the strengths of deep learning algorithms with traditional machine learning approaches, hybrid deep learning enables accurate and efficient processing of complex healthcare data, including medical records, images, and sensor data. This research proposes a permissions-based blockchain framework for scalable and secure healthcare systems, integrating hybrid deep learning models. The framework ensures that only authorized entities can access and modify sensitive health information, preserving patient privacy while facilitating seamless data sharing and collaboration among healthcare providers. Additionally, the hybrid deep learning models enable real-time analysis of large-scale healthcare data, facilitating timely diagnosis, treatment recommendations, and disease prediction. The integration of blockchain and hybrid deep learning presents numerous benefits, including enhanced scalability, improved security, interoperability, and informed decision making in healthcare systems. However, challenges such as computational complexity, regulatory compliance, and ethical considerations need to be addressed for successful implementation. By harnessing the potential of blockchain and hybrid deep learning, healthcare systems can overcome traditional limitations, promoting efficient and secure data management, personalized patient care, and advancements in medical research. The proposed framework lays the foundation for a future healthcare ecosystem that prioritizes scalability, security, and improved patient outcomes.
  3. Shams R, Abdrabou A, Al Bataineh M, Noordin KA
    Sensors (Basel), 2023 Sep 06;23(18).
    PMID: 37765757 DOI: 10.3390/s23187699
    Multiconnectivity allows user equipment/devices to connect to multiple radio access technologies simultaneously, including 5G, 4G (LTE), and WiFi. It is a necessity in meeting the increasing demand for mobile network services for the 5G and beyond wireless networks, while ensuring that mobile operators can still reap the benefits of their present investments. Multipath TCP (MPTCP) has been introduced to allow uninterrupted reliable data transmission over multiconnectivity links. However, energy consumption is a significant issue for multihomed wireless devices since most of them are battery-powered. This paper employs software-defined networking (SDN) and deep neural networks (DNNs) to manage the energy consumption of devices with multiconnectivity running MPTCP. The proposed method involves two lightweight algorithms implemented on an SDN controller, using a real hardware testbed of dual-homed wireless nodes connected to WiFi and cellular networks. The first algorithm determines whether a node should connect to a specific network or both networks. The second algorithm improves the selection made by the first by using a DNN trained on different scenarios, such as various network sizes and MPTCP congestion control algorithms. The results of our extensive experimentation show that this approach effectively reduces energy consumption while providing better network throughput performance compared to using single-path TCP or MPTCP Cubic or BALIA for all nodes.
  4. Ali A, Al-Rimy BAS, Tin TT, Altamimi SN, Qasem SN, Saeed F
    Sensors (Basel), 2023 Aug 28;23(17).
    PMID: 37687931 DOI: 10.3390/s23177476
    Precision medicine has emerged as a transformative approach to healthcare, aiming to deliver personalized treatments and therapies tailored to individual patients. However, the realization of precision medicine relies heavily on the availability of comprehensive and diverse medical data. In this context, blockchain-enabled federated learning, coupled with electronic medical records (EMRs), presents a groundbreaking solution to unlock revolutionary insights in precision medicine. This abstract explores the potential of blockchain technology to empower precision medicine by enabling secure and decentralized data sharing and analysis. By leveraging blockchain's immutability, transparency, and cryptographic protocols, federated learning can be conducted on distributed EMR datasets without compromising patient privacy. The integration of blockchain technology ensures data integrity, traceability, and consent management, thereby addressing critical concerns associated with data privacy and security. Through the federated learning paradigm, healthcare institutions and research organizations can collaboratively train machine learning models on locally stored EMR data, without the need for data centralization. The blockchain acts as a decentralized ledger, securely recording the training process and aggregating model updates while preserving data privacy at its source. This approach allows the discovery of patterns, correlations, and novel insights across a wide range of medical conditions and patient populations. By unlocking revolutionary insights through blockchain-enabled federated learning and EMRs, precision medicine can revolutionize healthcare delivery. This paradigm shift has the potential to improve diagnosis accuracy, optimize treatment plans, identify subpopulations for clinical trials, and expedite the development of novel therapies. Furthermore, the transparent and auditable nature of blockchain technology enhances trust among stakeholders, enabling greater collaboration, data sharing, and collective intelligence in the pursuit of advancing precision medicine. In conclusion, this abstract highlights the transformative potential of blockchain-enabled federated learning in empowering precision medicine. By unlocking revolutionary insights from diverse and distributed EMR datasets, this approach paves the way for a future where healthcare is personalized, efficient, and tailored to the unique needs of each patient.
  5. Rihan SDA, Anbar M, Alabsi BA
    Sensors (Basel), 2023 Aug 23;23(17).
    PMID: 37687798 DOI: 10.3390/s23177342
    The Internet of Things (IoT) has transformed our interaction with technology and introduced security challenges. The growing number of IoT attacks poses a significant threat to organizations and individuals. This paper proposes an approach for detecting attacks on IoT networks using ensemble feature selection and deep learning models. Ensemble feature selection combines filter techniques such as variance threshold, mutual information, Chi-square, ANOVA, and L1-based methods. By leveraging the strengths of each technique, the ensemble is formed by the union of selected features. However, this union operation may overlook redundancy and irrelevance, potentially leading to a larger feature set. To address this, a wrapper algorithm called Recursive Feature Elimination (RFE) is applied to refine the feature selection. The impact of the selected feature set on the performance of Deep Learning (DL) models (CNN, RNN, GRU, and LSTM) is evaluated using the IoT-Botnet 2020 dataset, considering detection accuracy, precision, recall, F1-measure, and False Positive Rate (FPR). All DL models achieved the highest detection accuracy, precision, recall, and F1 measure values, ranging from 97.05% to 97.87%, 96.99% to 97.95%, 99.80% to 99.95%, and 98.45% to 98.87%, respectively.
  6. Alhartomi MA, Salh A, Audah L, Alzahrani S, Alzahmi A, Altimania MR, et al.
    Sensors (Basel), 2023 Aug 18;23(16).
    PMID: 37631798 DOI: 10.3390/s23167262
    In this article, we utilize Digital Twins (DT) with edge networks using blockchain technology for reliable real-time data processing and provide a secure, scalable solution to bridge the gap between physical edge networks and digital systems. Then, we suggest a Federated Learning (FL) framework for collaborative computing that runs on a blockchain and is powered by the DT edge network. This framework increases data privacy while enhancing system security and reliability. The provision of sustainable Resource Allocation (RA) and ensure real-time data-processing interaction between Internet of Things (IoT) devices and edge servers depends on a balance between system latency and Energy Consumption (EC) based on the proposed DT-empowered Deep Reinforcement Learning (Deep-RL) agent. The Deep-RL agent evaluates the performance action based on RA actions in DT to distribute its bandwidth resources to IoT devices based on iteration and the actions taken to generate the best policy and enhance learning efficiency at every step. The simulation results show that the proposed Deep-RL-agent-based DT is able to exploit the best policy, select 47.5% of computing activities that are to be carried out locally with 1 MHz bandwidth and minimize the weighted cost of the transmission policy of edge-computing strategies.
  7. Hassan B, Baig S, Aslam S
    Sensors (Basel), 2023 Aug 07;23(15).
    PMID: 37571774 DOI: 10.3390/s23156991
    Cell-free massive multiple-input multiple-output (MIMO) systems have the potential of providing joint services, including joint initial access, efficient clustering of access points (APs), and pilot allocation to user equipment (UEs) over large coverage areas with reduced interference. In cell-free massive MIMO, a large coverage area corresponds to the provision and maintenance of the scalable quality of service requirements for an infinitely large number of UEs. The research in cell-free massive MIMO is mostly focused on time division duplex mode due to the availability of channel reciprocity which aids in avoiding feedback overhead. However, the frequency division duplex (FDD) protocol still dominates the current wireless standards, and the provision of angle reciprocity aids in reducing this overhead. The challenge of providing a scalable cell-free massive MIMO system in an FDD setting is also prevalent, since computational complexity regarding signal processing tasks, such as channel estimation, precoding/combining, and power allocation, becomes prohibitively high with an increase in the number of UEs. In this work, we consider an FDD-based scalable cell-free network with angular reciprocity and a dynamic cooperation clustering approach. We have proposed scalability for our FDD cell-free and performed a comparative analysis with reference to channel estimation, power allocation, and precoding/combining techniques. We present expressions for scalable spectral efficiency, angle-based precoding/combining schemes and provide a comparison of overhead between conventional and scalable angle-based estimation as well as combining schemes. Simulations confirm that the proposed scalable cell-free network based on an FDD scheme outperforms the conventional matched filtering scheme based on scalable precoding/combining schemes. The angle-based LP-MMSE in the FDD cell-free network provides 14.3% improvement in spectral efficiency and 11.11% improvement in energy efficiency compared to the scalable MF scheme.
  8. Al-Zabin LR, Al-Wesabi OA, Al Hajri H, Abdullah N, Khudayer BH, Al Lawati H
    Sensors (Basel), 2023 Aug 03;23(15).
    PMID: 37571696 DOI: 10.3390/s23156918
    Wireless sensor networks (WSNs) have been commonly utilized in event detection and environmental observation applications. The main aim of event detection is to define the presence or absence of an event. Various existing studies in the field of event detection depend on static or threshold values to reveal the occurrence of an event, which can result in imprecise sensor readings. Recently, many studies have utilized fuzzy logic to treat fluctuating sensor readings; as a result, they have decreased the number of false alarms created. However, there is some attention required when utilizing fuzzy logic. One aspect is that the efficiency and accuracy of the fuzzy membership function can be impacted by the utilization of heterogeneous sensors, which may increase the complexity of the fuzzy logic operation as the number of inputs rises. To address these issues, this paper proposes an approach named Probabilistic Collaborative Event Detection (PCED), which is a hybrid event detection technique that is based on a cluster WSN topology. The PCED approach utilizes a validated probabilistic technique for heterogeneous sensor nodes to transform sensing values into probability formulas and introduces a Cluster Head Decision Mechanism to make decisions based on the aggregated data from the sensors. The proposed approach employs fuzzy logic at the fusion center level to enhance the precision of event detection. The effectiveness of this method is thoroughly evaluated using MATLAB software, demonstrating an improvement in the probability of detection and a decrease in the probability of false alarms. PCED is compared to well-established event detection mechanisms such as the REFD mechanism. The results show that PCED reduces the occurrence of false alarms from 37 to 3 in certain scenarios, while improving detection accuracy by up to 19.4% over REDF and decreasing detection latency by up to 17.5%.
  9. Wong GS, Goh KOM, Tee C, Md Sabri AQ
    Sensors (Basel), 2023 Aug 02;23(15).
    PMID: 37571650 DOI: 10.3390/s23156869
    Autonomous vehicles are gaining popularity, and the development of automatic parking systems is a fundamental requirement. Detecting the parking slots accurately is the first step towards achieving an automatic parking system. However, modern parking slots present various challenges for detection task due to their different shapes, colors, functionalities, and the influence of factors like lighting and obstacles. In this comprehensive review paper, we explore the realm of vision-based deep learning methods for parking slot detection. We categorize these methods into four main categories: object detection, image segmentation, regression, and graph neural network, and provide detailed explanations and insights into the unique features and strengths of each category. Additionally, we analyze the performance of these methods using three widely used datasets: the Tongji Parking-slot Dataset 2.0 (ps 2.0), Sejong National University (SNU) dataset, and panoramic surround view (PSV) dataset, which have played a crucial role in assessing advancements in parking slot detection. Finally, we summarize the findings of each method and outline future research directions in this field.
  10. Rahman NAA, May Z, Jaffari R, Hanif M
    Sensors (Basel), 2023 Jul 31;23(15).
    PMID: 37571616 DOI: 10.3390/s23156833
    Structural health monitoring is a popular inspection method that utilizes acoustic emission (AE) signals for fault detection in engineering infrastructures. Diagnosis based on the propagation of AE signals along any surface material offers an attractive solution for fault identification. However, the classification of AE signals originating from failure events, especially coating failure (coating disbondment), is a challenging task given the AE signature of each material. Thus, different experimental settings and analyses of AE signals are required to classify the various types of coating failures, and they are time-consuming and expensive. Hence, to address these issues, we utilized machine learning (ML) classification models in this work to evaluate epoxy-based-protective-coating disbondment based on the AE principle. A coating disbondment experiment consisting of coated carbon steel test panels for the collection of AE signals was implemented. The obtained AE signals were then processed to construct the final dataset to train various state-of-the-art ML classification models to divide the failure severity of coating disbondment into three classes. Consequently, methods for the extraction of useful features, the handling of data imbalance, and a reduction in the bias of ML models were also effectively utilized in this study. Evaluations of state-of-the-art ML classification models on the AE signal dataset in terms of standard metrics revealed that the decision forest classification model outperformed the other state-of-the-art models, with accuracy, precision, recall, and F1 score values of 99.48%, 98.76%, 97.58%, and 98.17%, respectively. These results demonstrate the effectiveness of utilizing ML classification models for the failure severity prediction of protective-coating defects via AE signals.
  11. Chandran NK, Sultan MTH, Łukaszewicz A, Shahar FS, Holovatyy A, Giernacki W
    Sensors (Basel), 2023 Jul 30;23(15).
    PMID: 37571593 DOI: 10.3390/s23156810
    Unmanned aerial vehicle (UAV) usage is increasing drastically worldwide as UAVs are used in various industries for many applications, such as inspection, logistics, agriculture, and many more. This is because performing a task using UAV makes the job more efficient and reduces the workload needed. However, for a UAV to be operated manually or autonomously, the UAV must be equipped with proper safety features. An anti-collision system is one of the most crucial and fundamental safety features that UAVs must be equipped with. The anti-collision system allows the UAV to maintain a safe distance from any obstacles. The anti-collision technologies are of crucial relevance to assure the survival and safety of UAVs. Anti-collision of UAVs can be varied in the aspect of sensor usage and the system's working principle. This article provides a comprehensive overview of anti-collision technologies for UAVs. It also presents drone safety laws and regulations that prevent a collision at the policy level. The process of anti-collision technologies is studied from three aspects: Obstacle detection, collision prediction, and collision avoidance. A detailed overview and comparison of the methods of each element and an analysis of their advantages and disadvantages have been provided. In addition, the future trends of UAV anti-collision technologies from the viewpoint of fast obstacle detection and wireless networking are presented.
  12. Lye MH, AlDahoul N, Abdul Karim H
    Sensors (Basel), 2023 Jul 30;23(15).
    PMID: 37571588 DOI: 10.3390/s23156804
    Vidos from a first-person or egocentric perspective offer a promising tool for recognizing various activities related to daily living. In the egocentric perspective, the video is obtained from a wearable camera, and this enables the capture of the person's activities in a consistent viewpoint. Recognition of activity using a wearable sensor is challenging due to various reasons, such as motion blur and large variations. The existing methods are based on extracting handcrafted features from video frames to represent the contents. These features are domain-dependent, where features that are suitable for a specific dataset may not be suitable for others. In this paper, we propose a novel solution to recognize daily living activities from a pre-segmented video clip. The pre-trained convolutional neural network (CNN) model VGG16 is used to extract visual features from sampled video frames and then aggregated by the proposed pooling scheme. The proposed solution combines appearance and motion features extracted from video frames and optical flow images, respectively. The methods of mean and max spatial pooling (MMSP) and max mean temporal pyramid (TPMM) pooling are proposed to compose the final video descriptor. The feature is applied to a linear support vector machine (SVM) to recognize the type of activities observed in the video clip. The evaluation of the proposed solution was performed on three public benchmark datasets. We performed studies to show the advantage of aggregating appearance and motion features for daily activity recognition. The results show that the proposed solution is promising for recognizing activities of daily living. Compared to several methods on three public datasets, the proposed MMSP-TPMM method produces higher classification performance in terms of accuracy (90.38% with LENA dataset, 75.37% with ADL dataset, 96.08% with FPPA dataset) and average per-class precision (AP) (58.42% with ADL dataset and 96.11% with FPPA dataset).
  13. Ahmed TH, Tiang JJ, Mahmud A, Gwo-Chin C, Do DT
    Sensors (Basel), 2023 Jul 29;23(15).
    PMID: 37571565 DOI: 10.3390/s23156782
    This paper develops a novel approach for reliable vehicle-to-vehicle (V2V) communication in various environments. A switched beam antenna is deployed at the transmitting and receiving points, with a beam management system that concentrates the power in each beam using a low-computation algorithm and a potential mathematical model. The algorithm is designed to be flexible for various environments faced by vehicles. Additionally, an anti-failure system is proposed in case the intelligent transportation system (ITS) system fails to retrieve real-time Packet Delivery Ratio (PDR) values related to traffic density. Performance metrics include the time to collision in seconds, the bit error rate (BER), the packet error rate (PER), the average throughput (Mbps), the beam selection probability, and computational complexity factors. The proposed system is compared with traditional systems. Extensive experiments, simulations, and comparisons show that the proposed approach is excellent and reliable for vehicular systems. The proposed study demonstrates an average throughput of 1.7 Mbps, surpassing conventional methods' typical throughput of 1.35 Mbps. Moreover, the bit error rate (BER) of the proposed study is reduced by a factor of 0.1. Additionally, the proposed framework achieves a beam power efficiency of touching to 100% at computational factor of 34. These metrics indicate that the proposed method is both efficient and sufficiently robust.
  14. Ali A, Al-Rimy BAS, Alsubaei FS, Almazroi AA, Almazroi AA
    Sensors (Basel), 2023 Jul 28;23(15).
    PMID: 37571545 DOI: 10.3390/s23156762
    The swift advancement of the Internet of Things (IoT), coupled with the growing application of healthcare software in this area, has given rise to significant worries about the protection and confidentiality of critical health data. To address these challenges, blockchain technology has emerged as a promising solution, providing decentralized and immutable data storage and transparent transaction records. However, traditional blockchain systems still face limitations in terms of preserving data privacy. This paper proposes a novel approach to enhancing privacy preservation in IoT-based healthcare applications using homomorphic encryption techniques combined with blockchain technology. Homomorphic encryption facilitates the performance of calculations on encrypted data without requiring decryption, thus safeguarding the data's privacy throughout the computational process. The encrypted data can be processed and analyzed by authorized parties without revealing the actual contents, thereby protecting patient privacy. Furthermore, our approach incorporates smart contracts within the blockchain network to enforce access control and to define data-sharing policies. These smart contracts provide fine-grained permission settings, which ensure that only authorized entities can access and utilize the encrypted data. These settings protect the data from being viewed by unauthorized parties. In addition, our system generates an audit record of all data transactions, which improves both accountability and transparency. We have provided a comparative evaluation with the standard models, taking into account factors such as communication expense, transaction volume, and security. The findings of our experiments suggest that our strategy protects the confidentiality of the data while at the same time enabling effective data processing and analysis. In conclusion, the combination of homomorphic encryption and blockchain technology presents a solution that is both resilient and protective of users' privacy for healthcare applications integrated with IoT. This strategy offers a safe and open setting for the management and exchange of sensitive patient medical data, while simultaneously preserving the confidentiality of the patients involved.
  15. Horry MJ, Chakraborty S, Pradhan B, Paul M, Zhu J, Loh HW, et al.
    Sensors (Basel), 2023 Jul 21;23(14).
    PMID: 37514877 DOI: 10.3390/s23146585
    Screening programs for early lung cancer diagnosis are uncommon, primarily due to the challenge of reaching at-risk patients located in rural areas far from medical facilities. To overcome this obstacle, a comprehensive approach is needed that combines mobility, low cost, speed, accuracy, and privacy. One potential solution lies in combining the chest X-ray imaging mode with federated deep learning, ensuring that no single data source can bias the model adversely. This study presents a pre-processing pipeline designed to debias chest X-ray images, thereby enhancing internal classification and external generalization. The pipeline employs a pruning mechanism to train a deep learning model for nodule detection, utilizing the most informative images from a publicly available lung nodule X-ray dataset. Histogram equalization is used to remove systematic differences in image brightness and contrast. Model training is then performed using combinations of lung field segmentation, close cropping, and rib/bone suppression. The resulting deep learning models, generated through this pre-processing pipeline, demonstrate successful generalization on an independent lung nodule dataset. By eliminating confounding variables in chest X-ray images and suppressing signal noise from the bone structures, the proposed deep learning lung nodule detection algorithm achieves an external generalization accuracy of 89%. This approach paves the way for the development of a low-cost and accessible deep learning-based clinical system for lung cancer screening.
  16. Riskhan B, Safuan HAJ, Hussain K, Elnour AAH, Abdelmaboud A, Khan F, et al.
    Sensors (Basel), 2023 Jul 21;23(14).
    PMID: 37514868 DOI: 10.3390/s23146574
    Cyberattacks in the modern world are sophisticated and can be undetected in a dispersed setting. In a distributed setting, DoS and DDoS attacks cause resource unavailability. This has motivated the scientific community to suggest effective approaches in distributed contexts as a means of mitigating such attacks. Syn Flood is the most common sort of DDoS assault, up from 76% to 81% in Q2, according to Kaspersky's Q3 report. Direct and indirect approaches are also available for launching DDoS attacks. While in a DDoS attack, controlled traffic is transmitted indirectly through zombies to reflectors to compromise the target host, in a direct attack, controlled traffic is sent directly to zombies in order to assault the victim host. Reflectors are uncompromised systems that only send replies in response to a request. To mitigate such assaults, traffic shaping and pushback methods are utilised. The SYN Flood Attack Detection and Mitigation Technique (SFaDMT) is an adaptive heuristic-based method we employ to identify DDoS SYN flood assaults. This study suggested an effective strategy to identify and resist the SYN assault. A decision support mechanism served as the foundation for the suggested (SFaDMT) approach. The suggested model was simulated, analysed, and compared to the most recent method using the OMNET simulator. The outcome demonstrates how the suggested fix improved detection.
  17. Alabsi BA, Anbar M, Rihan SDA
    Sensors (Basel), 2023 Jul 19;23(14).
    PMID: 37514801 DOI: 10.3390/s23146507
    The Internet of Things (IoT) has brought significant advancements that have connected our world more closely than ever before. However, the growing number of connected devices has also increased the vulnerability of IoT networks to several types of attacks. In this paper, we present an approach for detecting attacks on IoT networks using a combination of two convolutional neural networks (CNN-CNN). The first CNN model is leveraged to select the significant features that contribute to IoT attack detection from the raw data on network traffic. The second CNN utilizes the features identified by the first CNN to build a robust detection model that accurately detects IoT attacks. The proposed approach is evaluated using the BoT IoT 2020 dataset. The results reveal that the proposed approach achieves 98.04% detection accuracy, 98.09% precision, 99.85% recall, 98.96% recall, and a 1.93% false positive rate (FPR). Furthermore, the proposed approach is compared with other deep learning algorithms and feature selection methods; the results show that it outperforms these algorithms.
  18. Hii CST, Gan KB, Zainal N, Mohamed Ibrahim N, Azmin S, Mat Desa SH, et al.
    Sensors (Basel), 2023 Jul 18;23(14).
    PMID: 37514783 DOI: 10.3390/s23146489
    Gait analysis is an essential tool for detecting biomechanical irregularities, designing personalized rehabilitation plans, and enhancing athletic performance. Currently, gait assessment depends on either visual observation, which lacks consistency between raters and requires clinical expertise, or instrumented evaluation, which is costly, invasive, time-consuming, and requires specialized equipment and trained personnel. Markerless gait analysis using 2D pose estimation techniques has emerged as a potential solution, but it still requires significant computational resources and human involvement, making it challenging to use. This research proposes an automated method for temporal gait analysis that employs the MediaPipe Pose, a low-computational-resource pose estimation model. The study validated this approach against the Vicon motion capture system to evaluate its reliability. The findings reveal that this approach demonstrates good (ICC(2,1) > 0.75) to excellent (ICC(2,1) > 0.90) agreement in all temporal gait parameters except for double support time (right leg switched to left leg) and swing time (right), which only exhibit a moderate (ICC(2,1) > 0.50) agreement. Additionally, this approach produces temporal gait parameters with low mean absolute error. It will be useful in monitoring changes in gait and evaluating the effectiveness of interventions such as rehabilitation or training programs in the community.
  19. Azudin K, Gan KB, Jaafar R, Ja'afar MH
    Sensors (Basel), 2023 Jul 18;23(14).
    PMID: 37514778 DOI: 10.3390/s23146484
    Not long ago, hearables paved the way for biosensing, fitness, and healthcare monitoring. Smart earbuds today are not only producing sound but also monitoring vital signs. Reliable determination of cardiovascular and pulmonary system information can explore the use of hearables for physiological monitoring. Recent research shows that photoplethysmography (PPG) signals not only contain details on oxygen saturation level (SPO2) but also carry more physiological information including pulse rate, respiration rate, blood pressure, and arterial-related information. The analysis of the PPG signal from the ear has proven to be reliable and accurate in the research setting. (1) Background: The present integrative review explores the existing literature on an in-ear PPG signal and its application. This review aims to identify the current technology and usage of in-ear PPG and existing evidence on in-ear PPG in physiological monitoring. This review also analyzes in-ear (PPG) measurement configuration and principle, waveform characteristics, processing technology, and feature extraction characteristics. (2) Methods: We performed a comprehensive search to discover relevant in-ear PPG articles published until December 2022. The following electronic databases: Institute of Electrical and Electronics Engineers (IEEE), ScienceDirect, Scopus, Web of Science, and PubMed were utilized to conduct the studies addressing the evidence of in-ear PPG in physiological monitoring. (3) Results: Fourteen studies were identified but nine studies were finalized. Eight studies were on different principles and configurations of hearable PPG, and eight studies were on processing technology and feature extraction and its evidence in in-ear physiological monitoring. We also highlighted the limitations and challenges of using in-ear PPG in physiological monitoring. (4) Conclusions: The available evidence has revealed the future of in-ear PPG in physiological monitoring. We have also analyzed the potential limitation and challenges that in-ear PPG will face in processing the signal.
  20. Kabir H, Tham ML, Chang YC, Chow CO, Owada Y
    Sensors (Basel), 2023 Jul 17;23(14).
    PMID: 37514742 DOI: 10.3390/s23146448
    Natural disasters, including earthquakes, floods, landslides, tsunamis, wildfires, and hurricanes, have become more common in recent years due to rapid climate change. For Post-Disaster Management (PDM), authorities deploy various types of user equipment (UE) for the search and rescue operation, for example, search and rescue robots, drones, medical robots, smartphones, etc., via the Internet of Robotic Things (IoRT) supported by cellular 4G/LTE/5G and beyond or other wireless technologies. For uninterrupted communication services, movable and deployable resource units (MDRUs) have been utilized where the base stations are damaged due to the disaster. In addition, power optimization of the networks by satisfying the quality of service (QoS) of each UE is a crucial challenge because of the electricity crisis after the disaster. In order to optimize the energy efficiency, UE throughput, and serving cell (SC) throughput by considering the stationary as well as movable UE without knowing the environmental priori knowledge in MDRUs aided two-tier heterogeneous networks (HetsNets) of IoRT, the optimization problem has been formulated based on emitting power allocation and user association combinedly in this article. This optimization problem is nonconvex and NP-hard where parameterized (discrete: user association and continuous: power allocation) action space is deployed. The new model-free hybrid action space-based algorithm called multi-pass deep Q network (MP-DQN) is developed to optimize this complex problem. Simulations results demonstrate that the proposed MP-DQN outperforms the parameterized deep Q network (P-DQN) approach, which is well known for solving parameterized action space, DQN, as well as traditional algorithms in terms of reward, average energy efficiency, UE throughput, and SC throughput for motionless as well as moveable UE.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links