Displaying publications 21 - 28 of 28 in total

Abstract:
Sort:
  1. Shahbazi P, Md Yusoff Musa, Tan AGY, Farhat Ahmadi Avin, Teo AWF, Sabaratnam V
    Sains Malaysiana, 2014;43:697-705.
    The isolation of 66 streptomycetes from rhizosphere soil of chili plants was done for their inhibitory activities against three different dominant species of Colletotrichum namely C. acutatum, C. gloeosporioides and C. capsici. Twenty one streptomycetes strains were active against at least one of the Colletotrichum species. In addition, ten strains that inhibited the in vitro growth of Colletotrichum species showed chitinase activity. Strain P42, which displayed the highest inhibitory activity against all three anthracnose fungi species and high chitinase activity was tested as biological control agent in a greenhouse study. The strain successfully controlled chili anthracnose disease by significantly reducing the disease severity. Phylogenetic analysis of the 16S rRNA gene sequences showed that strain P42 belongs to the Streptomyces rochei clade. The results of the current study showed that rhizosphere-derived soil of chili plants is an important source of bioactive streptomycetes which are antagonistic against Colletotrichum.
    Matched MeSH terms: Actinomycetales
  2. Pettit GR, Tan R, Melody N, Kielty JM, Pettit RK, Herald DL, et al.
    Bioorg Med Chem, 1999 May;7(5):895-9.
    PMID: 10400343
    A Montana soil actinomycete, Streptomyces anulatus, produced (1 x 10(-2)% yield) a new cancer cell growth inhibitory cyclooctadepsipeptide named montanastatin (1) accompanied by the potent anticancer antibiotic valinomycin (2) in very high (5.1%) yields. Valinomycin but not montanastatin inhibited growth of a number of pathogenic bacteria and fungi. Interpretation of high-field (500 MHz) NMR and high-resolution FAB mass spectral data allowed assignment of the structure cyclo-(D-Val-L-Lac-L-Val-D-Hiv) to montanastatin. Valinomycin (2) was also isolated from actinomycetes cultured from a tree branch and animal feces collected in Malaysia. Streptomyces exfoliatus, isolated from the tree branch, was found to contain valinomycin in 1.6% yield, while the fecal isolate, S. anulatus, gave valinomycin in 0.9% yield.
    Matched MeSH terms: Actinomycetales/chemistry*
  3. Sun F, Wang C, Chen H, Zheng Z
    Curr Microbiol, 2020 May;77(5):816-825.
    PMID: 31927597 DOI: 10.1007/s00284-019-01862-x
    Enteromorpha prolifera blooms considerably affected coastal environments in recent years. However, the effects of E. prolifera on microbial ecology and function remained unknown. In this study, metagenomic sequencing was used to investigate the effect of E. prolifera bloom on the microbial communities and functional genes in an aquaculture environment. Results showed that E. prolifera bloom could significantly alter the microbial composition and abundance, and heterotrophic bacteria comprised the major groups in the E. prolifera bloom pond, which was dominated by Actinomycetales and Flavobacteriales. The study indicated that viruses played an important role in shaping the microbial community and diversity during E. prolifera bloom. These viruses affected various dominant microbial taxa (such as Rhodobacteraceae, Synechococcus, and Prochlorococcus), which produced an obvious impact on potential nutrient transformation. Functional annotation analysis indicated that E. prolifera bloom would considerably shift the metabolism function by altering the structure and abundance of the microbial community. E. prolifera bloom pond had the low ability of potential metabolic capabilities of nitrogen, sulfur, and phosphate, whereas promoted gene abundance of genetic information processing. These changes in the microbial community and function could produce serious effect on aquaculture ecosystem.
    Matched MeSH terms: Actinomycetales/classification
  4. Teo WFA, Devaraj K, Nor MNM, Li WJ, Tan GYA
    Curr Microbiol, 2024 Mar 29;81(5):124.
    PMID: 38551738 DOI: 10.1007/s00284-024-03634-8
    In this study, we employed a polyphasic approach to determine the taxonomic position of a newly isolated actinomycete, designated SE31T, obtained from a sediment sample collected at Cape Rochado, Malaysia. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain SE31T belonged to the family Pseudonocardiaceae and exhibited the highest sequence similarity (98.9%) to Sciscionella marina. Further genomic analysis demonstrated a 93.4% average nucleotide identity and 54.4% digital DNA-DNA hybridization relatedness between strain SE31T and S. marina. The chemotaxonomic characteristics of strain SE31T were typical of the genus Sciscionella, including cell-wall chemotype IV (with meso-diaminopimelic acid as the diagnostic diamino acid, and arabinose and galactose as whole-cell sugars). The identified polar lipids of strain SE31T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethylethanolamine, and hydroxyphosphatidymethylethanolamine. The primary menaquinone observed was MK-9(H4), and the major cellular fatty acid was iso-C16:0. The genomic DNA size of strain SE31T was determined to be 7.4 Mbp with a G+C content of 68.7%. Based on these comprehensive findings, strain SE31T represents a novel species within the genus Sciscionella, in which the name Sciscionella sediminilitoris sp. nov. is proposed. The type strain of Sciscionella sediminilitoris is SE31T (= DSM 46824T = TBRC 5134T).
    Matched MeSH terms: Actinomycetales*
  5. Chantavorakit T, Muangham S, Aaron TWF, Duangmal K, Hong K
    Int J Syst Evol Microbiol, 2023 Nov;73(11).
    PMID: 37994910 DOI: 10.1099/ijsem.0.006177
    The taxonomic position of two novel Actinoallomurus strains isolated from rhizosphere soil of wild rice (Oryza rufipogon Griff.) was established using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains WRP6H-15T and WRP9H-5T were closely related to Actinoallomurus spadix JCM 3146T and Actinoallomurus purpureus TTN02-30T. Chemotaxonomic and morphological characteristics of both strains were consistent with members of the genus Actinoallomurus, while phenotypic properties, genome-based comparisons and phylogenomic analyses distinguished strains WRP6H-15T and WRP9H-5T from their closest phylogenetic relatives. The two strains showed nearly identical 16S rRNA gene sequences (99.9 %). Strain WRP6H-15T showed 68.7 % digital DNA-DNA hybridization, 95.9 % average nucleotide identity (ANI) based on blast and 96.4 % ANI based on MUMmer to strain WRP9H-5T. A phylogenomic tree based on draft genome sequences of the strains and representative of the genus Actinoallomurus confirmed the phylogenetic relationships. The genomes sizes of strains WRP6H-15T and WRP9H-5T were 9.42 Mb and 9.68 Mb, with DNA G+C contents of 71.5 and 71.3 mol%, respectively. In silico analysis predicted that the strains contain biosynthetic gene clusters encoding for specialized metabolites. Characterization based on chemotaxonomic, phylogenetic, phenotypic and genomic evidence demonstrated that strains WRP6H-15T and WRP9H-5T represent two novel species of the genus Actinoallomurus, for which the names Actinoallomurus soli sp. nov. (type strain WRP6H-15T=TBRC 15726T=NBRC 115556T) and Actinoallomurus rhizosphaericola sp. nov. (type strain WRP9H-5T=TBRC 15727T=NBRC 115557T) are proposed.
    Matched MeSH terms: Actinomycetales*
  6. Karunakaran R, Halim HA, Ng KP, Hanifah YA, Chin E, Jaafar FL, et al.
    Eur Rev Med Pharmacol Sci, 2011 Nov;15(11):1343-6.
    PMID: 22195371
    Tsukamurella spp. are a rare but important cause of intravascular catheter-related bacteremia in immunocompromised patients. The organism is an aerobic, Gram-positive, weakly acid-fast bacillus that is difficult to differentiate using standard laboratory methods from other aerobic actinomycetales such as Nocardia spp., Rhododoccus spp., Gordonia spp., and the rapid growing Mycobacterium spp. We report a case of Tsukamurella tyrosinosolvens catheter-related bacteremia in a 51-year-old haematology patient who responded to treatment with imipenem and subsequent line removal. 16srRNA sequencing allowed for the prompt identification of this organism.
    Matched MeSH terms: Actinomycetales/genetics; Actinomycetales Infections/drug therapy; Actinomycetales Infections/microbiology*
  7. Pek, Lim Chu, Chai, Hoon Khoo, Yoke, Kqueen Cheah
    MyJurnal
    Actinobacteria from underexplored and unusual environments have gained significant attention for their capability in producing novel bioactive molecules of diverse chemical entities. Streptomyces is the most prolific Actinobacteria in producing useful molecules. Rapid decline effectiveness of existing antibiotics in the treatment of infections are caused by the emergence of multidrug-resistant pathogens. Intensive efforts are urgently required in isolating non-Streptomyces or rare Actinobacteria and understanding of their distribution in the harsh environment for new drug discovery. In this study, pretreatment of soil samples with 1.5% phenol was used for the selective isolation of Actinobacteria from Dee Island and Greenwich Island. A high number of non-Streptomyces (69.4%) or rare Actinobacteria was significantly recovered despite the Streptomyces (30.6%), including the genera Micromonospora, Micrococcus, Kocuria, Dermacoccus, Brachybacterium, Brevibacterium, Rhodococcus, Microbacterium and Rothia. Reduced diversity and shift of distribution were observed at the elevated level of soil pH. The members of genera Streptomyces, Micromonospora and Micrococcus were found to distribute and tolerate to a relatively high pH level of soil (pH 9.4-9.5), and could potentially be alkaliphilic Actinobacteria. The phylogenetic analysis had revealed some potentially new taxa members of the genera Micromonospora, Micrococcus and Rhodococcus. Principal Component Analysis of soil samples was used to uncover the factors that underlie the diversity of culturable Actinobacteria. Water availability in soil was examined as the principal factor that shaped the diversity of the Actinobacteria, by providing a dynamic source for microbial interactions and elevated diversity of Actinobacteria.
    Matched MeSH terms: Actinomycetales
  8. Ng ZY, Fang BZ, Li WJ, Tan GYA
    Int J Syst Evol Microbiol, 2019 Oct;69(10):3031-3040.
    PMID: 31310190 DOI: 10.1099/ijsem.0.003587
    Three novel actinobacterial strains, designated as TPS16T, TPS81 and TPS83, were isolated from a sample of marine sediment collected from Tioman Island, Malaysia. The strains formed abundant branched substrate mycelia without fragmentation along with production of blue spores and blue diffusible pigment on soybean meal agar. The strains could grow at pH ranging from pH 6 to 12 and in 0-8 % (w/v) NaCl. Cell-wall hydrolysis showed the presence of meso-diaminopimelic acid. The strains were closely related to Marinactinospora thermotolerans SCSIO 00652T (97.60 %) and Marinactinospora endophytica YIM 690053T (96.87 %) based on phylogenetic analysis of 16S rRNA gene sequences. Multilocus sequence analysis including gyrB, recA and rpoB genes further confirmed that strain TPS16T represented a distinct branch within the family Nocardiopsaceae. The predominant menaquinones were MK-11(H2), MK-10(H2), MK-11(H4) and MK-10(H4), while the major fatty acids were found to be iso-C16 : 0, anteiso-C17 : 0, iso-C15 : 0 and C18 : 1ω9c. Genome sequencing revealed genome sizes of approximately 6 Mb and G+C contents of 73.8 mol%. A new genus, Marinitenerispora gen. nov., is proposed within the family Nocardiopsaceae based on polyphasic data and the type species is Marinitenerispora sediminis gen. nov., sp. nov. The type strain is TPS16T (=DSM 46825T=TBRC 5138T).
    Matched MeSH terms: Actinomycetales
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links