Displaying publications 21 - 40 of 849 in total

Abstract:
Sort:
  1. Podin Y, Sarovich DS, Price EP, Kaestli M, Mayo M, Hii K, et al.
    Antimicrob Agents Chemother, 2014;58(1):162-6.
    PMID: 24145517 DOI: 10.1128/AAC.01842-13
    Melioidosis is a potentially fatal disease caused by the saprophytic bacterium Burkholderia pseudomallei. Resistance to gentamicin is generally a hallmark of B. pseudomallei, and gentamicin is a selective agent in media used for diagnosis of melioidosis. In this study, we determined the prevalence and mechanism of gentamicin susceptibility found in B. pseudomallei isolates from Sarawak, Malaysian Borneo. We performed multilocus sequence typing and antibiotic susceptibility testing on 44 B. pseudomallei clinical isolates from melioidosis patients in Sarawak district hospitals. Whole-genome sequencing was used to identify the mechanism of gentamicin susceptibility. A novel allelic-specific PCR was designed to differentiate gentamicin-sensitive isolates from wild-type B. pseudomallei. A reversion assay was performed to confirm the involvement of this mechanism in gentamicin susceptibility. A substantial proportion (86%) of B. pseudomallei clinical isolates in Sarawak, Malaysian Borneo, were found to be susceptible to the aminoglycoside gentamicin, a rare occurrence in other regions where B. pseudomallei is endemic. Gentamicin sensitivity was restricted to genetically related strains belonging to sequence type 881 or its single-locus variant, sequence type 997. Whole-genome sequencing identified a novel nonsynonymous mutation within amrB, encoding an essential component of the AmrAB-OprA multidrug efflux pump. We confirmed the role of this mutation in conferring aminoglycoside and macrolide sensitivity by reversion of this mutation to the wild-type sequence. Our study demonstrates that alternative B. pseudomallei selective media without gentamicin are needed for accurate melioidosis laboratory diagnosis in Sarawak. This finding may also have implications for environmental sampling of other locations to test for B. pseudomallei endemicity.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  2. Kim DH, Choi JY, Kim HW, Kim SH, Chung DR, Peck KR, et al.
    Antimicrob Agents Chemother, 2013 Nov;57(11):5239-46.
    PMID: 23939892 DOI: 10.1128/AAC.00633-13
    In this surveillance study, we identified the genotypes, carbapenem resistance determinants, and structural variations of AbaR-type resistance islands among carbapenem-resistant Acinetobacter baumannii (CRAB) isolates from nine Asian locales. Clonal complex 92 (CC92), corresponding to global clone 2 (GC2), was the most prevalent in most Asian locales (83/108 isolates; 76.9%). CC108, or GC1, was a predominant clone in India. OXA-23 oxacillinase was detected in CRAB isolates from most Asian locales except Taiwan. blaOXA-24 was found in CRAB isolates from Taiwan. AbaR4-type resistance islands, which were divided into six subtypes, were identified in most CRAB isolates investigated. Five isolates from India, Malaysia, Singapore, and Hong Kong contained AbaR3-type resistance islands. Of these, three isolates harbored both AbaR3- and AbaR4-type resistance islands simultaneously. In this study, GC2 was revealed as a prevalent clone in most Asian locales, with the AbaR4-type resistance island predominant, with diverse variants. The significance of this study lies in identifying the spread of global clones of carbapenem-resistant A. baumannii in Asia.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  3. Abdul-Aziz MH, Abd Rahman AN, Mat-Nor MB, Sulaiman H, Wallis SC, Lipman J, et al.
    Antimicrob Agents Chemother, 2016 01;60(1):206-14.
    PMID: 26482304 DOI: 10.1128/AAC.01543-15
    Doripenem has been recently introduced in Malaysia and is used for severe infections in the intensive care unit. However, limited data currently exist to guide optimal dosing in this scenario. We aimed to describe the population pharmacokinetics of doripenem in Malaysian critically ill patients with sepsis and use Monte Carlo dosing simulations to develop clinically relevant dosing guidelines for these patients. In this pharmacokinetic study, 12 critically ill adult patients with sepsis receiving 500 mg of doripenem every 8 h as a 1-hour infusion were enrolled. Serial blood samples were collected on 2 different days, and population pharmacokinetic analysis was performed using a nonlinear mixed-effects modeling approach. A two-compartment linear model with between-subject and between-occasion variability on clearance was adequate in describing the data. The typical volume of distribution and clearance of doripenem in this cohort were 0.47 liters/kg and 0.14 liters/kg/h, respectively. Doripenem clearance was significantly influenced by patients' creatinine clearance (CL(CR)), such that a 30-ml/min increase in the estimated CL(CR) would increase doripenem CL by 52%. Monte Carlo dosing simulations suggested that, for pathogens with a MIC of 8 mg/liter, a dose of 1,000 mg every 8 h as a 4-h infusion is optimal for patients with a CL(CR) of 30 to 100 ml/min, while a dose of 2,000 mg every 8 h as a 4-h infusion is best for patients manifesting a CL(CR) of >100 ml/min. Findings from this study suggest that, for doripenem usage in Malaysian critically ill patients, an alternative dosing approach may be meritorious, particularly when multidrug resistance pathogens are involved.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  4. Ho SE, Subramaniam G, Palasubramaniam S, Navaratnam P
    Antimicrob Agents Chemother, 2002 Oct;46(10):3286-7.
    PMID: 12234862
    We have isolated and identified a carbapenem-resistant Pseudomonas aeruginosa strain from Malaysia that produces an IMP-7 metallo-beta-lactamase. This isolate showed high-level resistance to meropenem and imipenem, the MICs of which were 256 and 128 micro g/ml, respectively. Isoelectric focusing analyses revealed pI values of >9.0, 8.2, and 7.8, which indicated the possible presence of IMP and OXA. DNA sequencing confirmed the identity of the IMP-7 determinant.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  5. Hussain A, Ranjan A, Nandanwar N, Babbar A, Jadhav S, Ahmed N
    Antimicrob Agents Chemother, 2014 Dec;58(12):7240-9.
    PMID: 25246402 DOI: 10.1128/AAC.03320-14
    In view of the epidemiological success of CTX-M-15-producing lineages of Escherichia coli and particularly of sequence type 131 (ST131), it is of significant interest to explore its prevalence in countries such as India and to determine if antibiotic resistance, virulence, metabolic potential, and/or the genetic architecture of the ST131 isolates differ from those of non-ST131 isolates. A collection of 126 E. coli isolates comprising 43 ST131 E. coli, 40 non-ST131 E. coli, and 43 fecal E. coli isolates collected from a tertiary care hospital in India was analyzed. These isolates were subjected to enterobacterial repetitive intergenic consensus (ERIC)-based fingerprinting, O typing, phylogenetic grouping, antibiotic sensitivity testing, and virulence and antimicrobial resistance gene (VAG) detection. Representative isolates from this collection were also analyzed by multilocus sequence typing (MLST), conjugation, metabolic profiling, biofilm production assay, and zebra fish lethality assay. All of the 43 ST131 E. coli isolates were exclusively associated with phylogenetic group B2 (100%), while most of the clinical non-ST131 and stool non-ST131 E. coli isolates were affiliated with the B2 (38%) and A (58%) phylogenetic groups, respectively. Significantly greater proportions of ST131 isolates (58%) than non-ST131 isolates (clinical and stool E. coli isolates, 5% each) were technically identified to be extraintestinal pathogenic E. coli (ExPEC). The clinical ST131, clinical non-ST131, and stool non-ST131 E. coli isolates exhibited high rates of multidrug resistance (95%, 91%, and 91%, respectively), extended-spectrum-β-lactamase (ESBL) production (86%, 83%, and 91%, respectively), and metallo-β-lactamase (MBL) production (28%, 33%, and 0%, respectively). CTX-M-15 was strongly linked with ESBL production in ST131 isolates (93%), whereas CTX-M-15 plus TEM were present in clinical and stool non-ST131 E. coli isolates. Using MLST, we confirmed the presence of two NDM-1-positive ST131 E. coli isolates. The aggregate bioscores (metabolite utilization) for ST131, clinical non-ST131, and stool non-ST131 E. coli isolates were 53%, 52%, and 49%, respectively. The ST131 isolates were moderate biofilm producers and were more highly virulent in zebra fish than non-ST131 isolates. According to ERIC-based fingerprinting, the ST131 strains were more genetically similar, and this was subsequently followed by the genetic similarity of clinical non-ST131 and stool non-ST131 E. coli strains. In conclusion, our data provide novel insights into aspects of the fitness advantage of E. coli lineage ST131 and suggest that a number of factors are likely involved in the worldwide dissemination of and infections due to ST131 E. coli isolates.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  6. Chia PY, Sengupta S, Kukreja A, S L Ponnampalavanar S, Ng OT, Marimuthu K
    PMID: 32046775 DOI: 10.1186/s13756-020-0685-1
    Infections by multidrug-resistant (MDR) Gram-negative organisms (GN) are associated with a high mortality rate and present an increasing challenge to the healthcare system worldwide. In recent years, increasing evidence supports the association between the healthcare environment and transmission of MDRGN to patients and healthcare workers. To better understand the role of the environment in transmission and acquisition of MDRGN, we conducted a utilitarian review based on literature published from 2014 until 2019.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  7. Salawudeen A, Raji YE, Jibo GG, Desa MNM, Neoh HM, Masri SN, et al.
    Antimicrob Resist Infect Control, 2023 Dec 07;12(1):142.
    PMID: 38062531 DOI: 10.1186/s13756-023-01346-5
    The rising prevalence of multidrug-resistant (MDR) and extended-spectrum beta lactamase-resistant (ESBL) Klebsiella pneumoniae (K. pneumoniae) is an important global public health challenge. This threat is even more pertinent in clinical settings. Morbidity and mortality associated with this condition are alarming particularly in the developing regions of the world. A comprehensive evaluation of the epidemiology of this phenomenon will assist towards the global effort of reducing its burden. So, this systematic review and meta-analysis was conducted to evaluate the epidemiology of MDR K. pneumoniae in South-Eastern Asia (SEA). The study was done under the PRISMA guidelines and was preceded by the development of a priori protocol. The protocol was then registered in PROSPERO-the public registry for systematic reviews. Seven important outcomes which include the assessment of the overall MDR K. pneumoniae prevalence were designed to be evaluated. A literature search was carried out in five selected electronic databases and 4389 were screened. Of these articles, 21 studies that met the eligibility criteria were included in the review. Relevant data were extracted from the included studies. By conducting a quality effect meta-analysis, the pooled prevalence for MDR and ESBL K. pneumoniae in SEA was estimated at 55% (CI 9-96) and 27% (CI 32-100) respectively. The review also identified ESBL genes types of allodemic situations occurring mostly in respiratory tract infections. The high prevalence of MDR and ESBL K. pneumoniae in this subregion is highly significant and of both public health and clinical relevance. Overall, the findings of this review will assist in the effective prevention and control of this threat in SEA.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  8. Ngoi ST, Chong CW, Ponnampalavanar SSS, Tang SN, Idris N, Abdul Jabar K, et al.
    Antimicrob Resist Infect Control, 2021 04 23;10(1):70.
    PMID: 33892804 DOI: 10.1186/s13756-021-00936-5
    BACKGROUND: Knowledge on the epidemiology, genotypic and phenotypic features of antimicrobial-resistant (AMR) ESKAPEE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli) and their association with hospital-acquired infections (HAIs) are limited in Malaysia. Therefore, we evaluated the AMR features and resistance mechanisms of the ESKAPEE pathogens collected in a tertiary hospital located in the capital of Malaysia.

    METHODS: A total of 378 AMR-ESKAPEE strains were obtained based on convenience sampling over a nine-month study period (2019-2020). All strains were subjected to disk diffusion and broth microdilution assays to determine the antimicrobial susceptibility profiles. Polymerase chain reaction (PCR) and DNA sequence analyses were performed to determine the AMR genes profiles of the non-susceptible strains. Chi-square test and logistic regression analyses were used to correlate the AMR profiles and clinical data to determine the risk factors associated with HAIs.

    RESULTS: High rates of multidrug resistance (MDR) were observed in A. baumannii, K. pneumoniae, E. coli, and S. aureus (69-89%). All organisms except E. coli were frequently associated with HAIs (61-94%). Non-susceptibility to the last-resort drugs vancomycin (in Enterococcus spp. and S. aureus), carbapenems (in A. baumannii, P. aeruginosa, and Enterobacteriaceae), and colistin (in Enterobacteriaceae) were observed. Both A. baumannii and K. pneumoniae harbored a wide array of extended-spectrum β-lactamase genes (blaTEM, blaSHV, blaCTX-M, blaOXA). Metallo-β-lactamase genes (blaVEB, blaVIM, blaNDM) were detected in carbapenem-resistant strains, at a higher frequency compared to other local reports. We detected two novel mutations in the quinolone-resistant determining region of the gyrA in fluoroquinolone-resistant E. coli (Leu-102-Ala; Gly-105-Val). Microbial resistance to ampicillin, methicillin, and cephalosporins was identified as important risk factors associated with HAIs in the hospital.

    CONCLUSION: Overall, our findings may provide valuable insight into the microbial resistance pattern and the risk factors of ESKAPEE-associated HAIs in a tertiary hospital located in central Peninsular Malaysia. The data obtained in this study may contribute to informing better hospital infection control in this region.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  9. Ng ZY, Tan GYA
    Antonie Van Leeuwenhoek, 2018 May;111(5):727-742.
    PMID: 29511956 DOI: 10.1007/s10482-018-1042-8
    Tioman Island is one of many sources for underexplored actinobacterial diversity in Malaysia. Selective isolation, molecular profiling, 16S rRNA gene sequencing and phylogenetic analyses were carried out to highlight the diversity of the marine actinobacterial community in a sediment collected off Tioman Island. A high number of diverse actinobacteria were recovered using skim milk/HEPES pre-treatment on a mannitol-based medium. A total of 123 actinobacterial strains were isolated, including thirty obligate marine actinobacteria putatively identified as Salinispora spp. Molecular fingerprinting profiles obtained with a double digestion approach grouped the remaining non-Salinispora-like strains into 24 different clusters, with Streptomyces and Blastococcus as the major clusters. A total of 17 strains were identified as novel actinobacterial species within the genera Streptomyces (n = 6), Blastococcus (n = 5), Marinactinospora (n = 3), Nocardiopsis (n = 1), Agromyces (n = 1) and Nonomuraea (n = 1) based on 16S rRNA gene sequence analyses. Polyphasic data from three putative Marinactinospora spp. showed that the strains represent a new genus in the Nocardiopsaceae family. Crude extracts from the strains were also found to inhibit the growth of Gram-positive (Staphylococcus aureus, Bacillus subtilis) and Gram-negative (Providencia alcalifaciens) pathogens. Hierarchical clustering of the bioactivities of an active fraction revealed a unique profile, which is closely related that of fosfomycin.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  10. Chua RW, Song KP, Ting ASY
    Antonie Van Leeuwenhoek, 2023 Oct;116(10):1057-1072.
    PMID: 37597137 DOI: 10.1007/s10482-023-01870-9
    A rare fungal endophyte, identified as Buergenerula spartinae (C28), was isolated from the roots of Cymbidium orchids and was characterised and evaluated for its antimicrobial activities. Bio-guided fractionation revealed 4 fractions from B. spartinae (C28) having antibacterial activities against at least one bacterial pathogen tested (Bacillus cereus and Staphylococcus aureus). However, inhibitory activities were absent against pathogenic fungi (Ganoderma boninense, Pythium ultimum and Fusarium solani). Fraction 2 and fraction 4 of B. spartinae (C28) exhibited potent antibacterial activities against S. aureus (MIC: 0.078 mg/mL) and B. cereus (MIC: 0.313 mg/mL), respectively. LCMS analysis revealed the presence of antibacterial agents and antibiotics in fraction 2 (benoxinate, pyropheophorbide A, (-)-ormosanine and N-undecylbenzenesulfonic acid) and fraction 4 (kaempferol 3-p-coumarate, 6-methoxy naphthalene acetic acid, levofuraltadone, hinokitiol glucoside, 3-α(S)-strictosidine, pyropheophorbide A, 5'-hydroxystreptomycin, kanzonol N and 3-butylidene-7-hydroxyphthalide), which may be responsible for the antibacterial activities observed. Most of the bioactive compounds profiled from the antibacterial fractions were discovered for the first time from endophytic isolates (i.e. from B. spartinae (C28)). Buergenerula spartinae (C28) from Cymbidium sp. is therefore, an untapped resource of bioactive compounds for potential applications in healthcare and commercial industries.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  11. Alkotaini B, Anuar N, Kadhum AA
    Appl Biochem Biotechnol, 2015 Feb;175(4):1868-78.
    PMID: 25427593 DOI: 10.1007/s12010-014-1410-4
    The mechanisms of action of AN5-1 against Gram-negative and Gram-positive bacteria were investigated by evaluations of the intracellular content leakage and by microscopic observations of the treated cells. Escherichia coli and Staphylococcus aureus were used for this investigation. Measurements of DNA, RNA, proteins, and β-galactosidase were taken, and the results showed a significant increase in the cultivation media after treatment with AN5-1 compared with the untreated cells. The morphological changes of treated cells were shown using transmission electron microscopy (TEM) and atomic force microscopy (AFM). The observations showed that AN5-1 acts against E. coli and against S. aureus in similar ways, by targeting the cell wall, causing disruptions; at a high concentration (80 AU/ml), these disruptions led to cell lysis. The 3D AFM imaging system showed that at a low concentration of 20 AU/ml, the effect of AN5-1 is restricted to pore formation only. Moreover, a separation between the cell wall and the cytoplasm was observed when Gram-negative bacteria were treated with a low concentration (20 AU/ml) of AN5-1.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  12. Rasouli M, Abbasi S, Sarsaifi K, Hani H, Ahmad Z, Omar AR
    Appl Biochem Biotechnol, 2014 Jan;172(1):394-404.
    PMID: 24081707 DOI: 10.1007/s12010-013-0514-6
    Enteroendocrine cells are the largest population of hormone-producing cells in the body and play important roles in many aspects of body functions. The enteroendocrine cell population is divided into different subpopulations that secrete different hormones and peptides. Characterization of each subpopulation is particularly useful for analyzing the cellular mechanisms responsible for specific cell types. Therefore, the necessity of a pure cell line for a specific study purpose was the important motivation for the separation of cell lines for each subpopulation of enteroendocrine cells. The present research introduces a method for the isolation of L-cells, one of the important subpopulations of enteroendocrine cells. The antibiotic selection method was conducted in order to isolate the L-cells from a heterogonous population of intestinal cell line. In this method, a neomycin resistance gene (as selected marker) was expressed under the control of a specific promoter of L-cells. After transfection of manipulated plasmid, only the cells which determine the specific promoter and express neomycin resistance protein would be able to survive under Geneticin antibiotic treatment condition. In order to confirm that the isolated cells were L-cells, reverse transcriptase polymerase chain reaction (PCR) and quantitative PCR assays were performed. Based on the results, the isolated cells were pure L-cells that could be able to express specific mRNA of L-cells efficiently. This technique provides a unique method for the isolation and purification of any cell line. The purified isolated L-cells by this method can be used for future studies and for analyzing cellular mechanisms that involve L-cells' functions.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology*
  13. Chabattula SC, Gupta PK, Govarthanan K, Varadaraj S, Rayala SK, Chakraborty D, et al.
    Appl Biochem Biotechnol, 2024 Jan;196(1):382-399.
    PMID: 37133677 DOI: 10.1007/s12010-023-04555-1
    Inorganic nanoparticles (NPs) have played an important role as nano-drug delivery systems during cancer therapy in recent years. These NPs can carry cancer therapeutic agents. Due to this, they are considered a promising ancillary to traditional cancer therapies. Among inorganic NPs, Zinc Oxide (ZnO) NPs have been extensively utilized in cellular imaging, gene/drug delivery, anti-microbial, and anti-cancerous applications. In this study, a rapid and cost-effective method was used to synthesize Nat-ZnO NPs using the floral extract of the Nyctanthes arbor-tristis (Nat) plant. Nat-ZnO NPs were physicochemically characterized and tested further on in vitro cancer models. The average hydrodynamic diameter (Zaverage) and the net surface charge of Nat-ZnO NPs were 372.5 ± 70.38 d.nm and -7.03 ± 0.55 mV, respectively. Nat-ZnO NPs exhibited a crystalline nature. HR-TEM analysis showed the triangular shape of NPs. Furthermore, Nat-ZnO NPs were also found to be biocompatible and hemocompatible when tested on mouse fibroblast cells and RBCs. Later, the anti-cancer activity of Nat-ZnO NPs was tested on lung and cervical cancer cells. These NPs displayed potent anti-cancer activity and induced programmed cell death in cancer cells.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  14. Thakur P, Arivarasan VK, Kumar G, Pant G, Kumar R, Pandit S, et al.
    Appl Biochem Biotechnol, 2024 Jan;196(1):491-505.
    PMID: 37145344 DOI: 10.1007/s12010-023-04550-6
    The current study reports the synthesis of sustainable nano-hydroxyapatite (nHAp) using a wet chemical precipitation approach. The materials used in the green synthesis of nHAp were obtained from environmental biowastes such as HAp from eggshells and pectin from banana peels. The physicochemical characterization of obtained nHAp was carried out using different techniques. For instance, X-ray diffractometer (XRD) and FTIR spectroscopy were used to study the crystallinity and synthesis of nHAp respectively. In addition, the morphology and elemental composition of nHAP were studied using FESEM equipped with EDX. HRTEM showed the internal structure of nHAP and calculated its grain size which was 64 nm. Furthermore, the prepared nHAp was explored for its antibacterial and antibiofilm activity which has received less attention previously. The obtained results showed the potential of pectin-bound nHAp as an antibacterial agent for various biomedical and healthcare applications.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  15. Chabattula SC, Patra B, Gupta PK, Govarthanan K, Rayala SK, Chakraborty D, et al.
    Appl Biochem Biotechnol, 2024 Feb;196(2):1058-1078.
    PMID: 37318689 DOI: 10.1007/s12010-023-04582-y
    Metal/Metal Oxide nanoparticles (M/MO NPs) exhibit potential biomedical applications due to their tunable physicochemical properties. Recently, the biogenic synthesis of M/MO NPs has gained massive attention due to their economical and eco-friendly nature. In the present study, Nyctanthes arbor-tristis (Nat) flower extract-derived Zinc Ferrite NPs (Nat-ZnFe2O4 NPs) were synthesized and physicochemically characterized by FTIR, XRD, FE-SEM, DLS, and other instruments to study their crystallinity, size, shape, net charge, presence of phytocompounds on NP's surface and several other features. The average particle size of Nat-ZnFe2O4 NPs was approx. 25.87 ± 5.67 nm. XRD results showed the crystalline nature of Nat-ZnFe2O4 NPs. The net surface charge on NPs was -13.28 ± 7.18 mV. When tested on mouse fibroblasts and human RBCs, these NPs were biocompatible and hemocompatible. Later, these Nat-ZnFe2O4 NPs exhibited potent anti-neoplastic activity against pancreatic, lung, and cervical cancer cells. In addition, NPs induced apoptosis in tested cancer cells through ROS generation. These in vitro studies confirmed that Nat-ZnFe2O4 NPs could be used for cancer therapy. Moreover, further studies are recommended on ex vivo platforms for future clinical applications.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  16. Masri A, Abdelnasir S, Anwar A, Iqbal J, Numan A, Jagadish P, et al.
    Appl Microbiol Biotechnol, 2021 Apr;105(8):3315-3325.
    PMID: 33797573 DOI: 10.1007/s00253-021-11221-1
    BACKGROUND: Conducting polymer based nanocomposites are known to be effective against pathogens. Herein, we report the antimicrobial properties of multifunctional polypyrrole-cobalt oxide-silver nanocomposite (PPy-Co3O4-AgNPs) for the first time. Antibacterial activities were tested against multi-drug-resistant Gram-negative Escherichia coli (E. coli) and Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) bacteria, while antiamoebic effects were assessed against opportunistic protist Acanthamoeba castellanii (A. castellanii).

    RESULTS: The ternary nanocomposite containing conducting polymer polypyrrole, cobalt oxide, and silver nanoparticles showed potent antimicrobial effects against these pathogens. The antibacterial assay showed that PPy-Co3O4-AgNPs exhibited significant bactericidal activity against neuropathogenic E. coli K1 at only 8 μg/mL as compared to individual components of the nanocomposite, whereas a 70 % inhibition of A. castellanii viability was observed at 50 μg/mL. Moreover, PPy-Co3O4-AgNPs were found to have minimal cytotoxicity against human keratinocytes HaCaT cells in vitro even at higher concentration (50 μg/mL), and also reduced the microbes-mediated cytopathogenicity against host cells.

    CONCLUSION: These results demonstrate that PPy-Co3O4-AgNPs hold promise in the development of novel antimicrobial nanomaterials for biomedical applications.

    KEY POINTS: •Synthesis of polypyrrole-cobalt oxide-silver (PPy-Co3O4-AgNPs) nanocomposite. •Antimicrobial activity of nanocomposite. •PPy-Co3O4-AgNPs hold promise for biomedical applications.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  17. Puan SL, Erriah P, Baharudin MMA, Yahaya NM, Kamil WNIWA, Ali MSM, et al.
    Appl Microbiol Biotechnol, 2023 Sep;107(18):5569-5593.
    PMID: 37450018 DOI: 10.1007/s00253-023-12651-9
    Antibiotic resistance is a growing concern that is affecting public health globally. The search for alternative antimicrobial agents has become increasingly important. Antimicrobial peptides (AMPs) produced by Bacillus spp. have emerged as a promising alternative to antibiotics, due to their broad-spectrum antimicrobial activity against resistant pathogens. In this review, we provide an overview of Bacillus-derived AMPs, including their classification into ribosomal (bacteriocins) and non-ribosomal peptides (lipopeptides and polyketides). Additionally, we delve into the molecular mechanisms of AMP production and describe the key biosynthetic gene clusters involved. Despite their potential, the low yield of AMPs produced under normal laboratory conditions remains a challenge to large-scale production. This review thus concludes with a comprehensive summary of recent studies aimed at enhancing the productivity of Bacillus-derived AMPs. In addition to medium optimization and genetic manipulation, various molecular strategies have been explored to increase the production of recombinant antimicrobial peptides (AMPs). These include the selection of appropriate expression systems, the engineering of expression promoters, and metabolic engineering. Bacillus-derived AMPs offer great potential as alternative antimicrobial agents, and this review provides valuable insights on the strategies to enhance their production yield, which may have significant implications for combating antibiotic resistance. KEY POINTS: • Bacillus-derived AMP is a potential alternative therapy for resistant pathogens • Bacillus produces two main classes of AMPs: ribosomal and non-ribosomal peptides • AMP yield can be enhanced using culture optimization and molecular approaches.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  18. Zin NM, Al-Shaibani MM, Jalil J, Sukri A, Al-Maleki AR, Sidik NM
    Arch Microbiol, 2020 Oct;202(8):2083-2092.
    PMID: 32494868 DOI: 10.1007/s00203-020-01896-x
    Chloramphenicol (CAP) and cyclo-(L-Val-L-Pro) were previously isolated from Streptomyces sp., SUK 25 which exhibited a high potency against methicillin-resistant Staphylococcus aureus (MRSA). This study aimed to profile gene expression of MRSA treated with CAP and cyclo-(L-Val-L-Pro) compounds using DNA microarray. Treatment of MRSA with CAP resulted in upregulation of genes involved in protein synthesis, suggesting the coping mechanism of MRSA due to the inhibition of protein synthesis effect from CAP. Most upregulated genes in cyclo-(L-Val-L-Pro) were putative genes with unknown functions. Interestingly, genes encoding ribosomal proteins, cell membrane synthesis, DNA metabolism, citric acid cycle and virulence were downregulated in MRSA treated with cyclo-(L-Val-L-Pro) compound, suggesting the efficacy of this compound in targeting multiple biological pathways. Contrary to CAP, with only a single target, cyclo-(L-Val-L-Pro) isolated from this study had multiple antimicrobial targets that can delay antibiotic resistance and hence is a potential antimicrobial agent of MRSA.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  19. Abdulbaqi HR, Himratul-Aznita WH, Baharuddin NA
    Arch Oral Biol, 2016 Oct;70:117-124.
    PMID: 27343694 DOI: 10.1016/j.archoralbio.2016.06.011
    OBJECTIVE: Green tea (Gt), leafs of Camellia sinensis var. assamica, is widely consumed as healthy beverage since thousands of years in Asian countries. Chewing sticks (miswak) of Salvadora persica L. (Sp) are traditionally used as natural brush to ensure oral health in developing countries. Both Gt and Sp extracts were reported to have anti-bacterial activity against many dental plaque bacteria. However, their combination has never been tested to have anti-bacterial and anti-adherence effect against primary dental plaque colonizers, playing an initial role in the dental plaque development, which was investigated in this study.

    METHODS: Two-fold serial micro-dilution method was used to measure minimal inhibitory concentration (MIC) of aqueous extracts of Gt, Sp and their combinations. Adsorption to hexadecane was used to determine the cell surface hydrophobicity (CSH) of bacterial cells. Glass beads were used to mimic the hard tissue surfaces, and were coated with saliva to develop experimental pellicles for the adhesion of the primary colonizing bacteria.

    RESULTS: Gt aqueous extracts exhibited better anti-plaque effect than Sp aqueous extracts. Their combination, equivalent to 1/4 and 1/2 of MIC values of Gt and Sp extracts respectively, showed synergistic anti-plaque properties with fractional inhibitory concentration (FIC) equal to 0.75. This combination was found to significantly reduce CSH (p<0.05) and lower the adherence ability (p<0.003) towards experimental pellicles.

    CONCLUSION: Combination between Gt and Sp aqueous extracts exhibited synergistic anti-plaque activity, and could be used as a useful active agent to produce oral health care products.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  20. Mohd-Zubri NS, Ramasamy K, Abdul-Rahman NZ
    Arch Oral Biol, 2022 Nov;143:105515.
    PMID: 36084351 DOI: 10.1016/j.archoralbio.2022.105515
    OBJECTIVE: This study aims to characterise the lactic acid bacteria (LAB) isolated from local Malaysian fermented foods with oral probiotics properties.

    DESIGN: The LAB strains isolated from Malaysian fermented foods, Lactobacillus brevis FT 6 and Lactobacillus plantarum FT 12, were assessed for their antimicrobial properties against Porphyromonas gingivalis ATCC 33277 via disc diffusion assay. Anti-biofilm properties were determined by treating the overnight P. gingivalis ATCC 33277 biofilm with different concentrations of LAB cell-free supernatant (LAB CFS). Quantification of biofilm was carried out by measuring the optical density of stained biofilm. The ability of L. brevis FT 6 and L. plantarum FT 12 to tolerate salivary amylase was also investigated. Acid production with different sugars was carried out by pH measurement and screening for potential antimicrobial organic acid by disc diffusion assay of neutralised probiotics CFS samples. In this study, L. rhamnosus ATCC 7469, a commercial strain was used to compare the efficacy of the isolated strain with the commercial strain.

    RESULTS: Lactobacillus brevis FT 6 and L. plantarum FT 12 possess antimicrobial activity against P. gingivalis with inhibition diameters of more than 10 mm, and the results were comparable with L. rhamnosus ATCC 7469. The MIC and MBC assay results for all tested strains were recorded to be 25 µl/µl concentration. All LAB CFS reduced biofilm formation proportionally to the CFS concentration and tolerated salivary amylase with more than 50% viability. Overnight cultures of all lactic acid bacteria strains showed a pH reduction and neutralised CFS of all lactic acid bacteria strains did not show any inhibition towards P. gingivalis.

    CONCLUSIONS: These results indicate that the isolated probiotics have the potential as probiotics to be used as a supportive oral health treatment, especially against a periodontal pathogen, P. gingivalis.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links