Displaying publications 21 - 30 of 30 in total

Abstract:
Sort:
  1. Alwahaibi NY, Budin SB, Mohamed J, Alhamdani A
    J Gastroenterol Hepatol, 2010 Apr;25(4):786-91.
    PMID: 20492335 DOI: 10.1111/j.1440-1746.2009.06160.x
    Selenium's molecular mechanism for cancer chemoprevention remains unknown. We aimed to study the gene expression of nuclear factor-kappaB (NF-kappaB), tumor growth factor-alpha (TGF-alpha) and cyclin D1 and the effects of sodium selenite using preventive and therapeutic approaches in chemically-induced hepatocarcinogenesis in rats.
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology*
  2. Iqbal M, Okazaki Y, Okada S
    Mol Cell Biochem, 2007 Oct;304(1-2):61-9.
    PMID: 17487455
    Probucol is a clinically used cholesterol-lowering drug, with pronounced antioxidant properties. We have reported previously, that dietary supplementation of probucol enhances NAD(P)H:quinone reductase (Iqbal M, Okada S (2003) Pharmacol Toxicol 93:259-263) and inhibits Fe-NTA induced lipid peroxidation and DNA damage in vitro (Iqbal M, Sharma SD, Oakada (2004) Redox Rep 9:167-172). Further to this, in the present study, we evaluated the modulatory effect of probucol on iron nitrilotriacetae (Fe-NTA) dependent renal carcinogenesis, hyperproliferative response and oxidative stress. In Fe-NTA alone treated group, a 20% renal cell tumor incidence was recorded whereas, in N-diethylnitrosamine (DEN)-initiated and Fe-NTA promoted animals, the percentage tumor incidence was increased to 70% as compared with untreated controls. No tumor incidence was recorded in DEN-initiated, nonpromoted group. Diet supplemented with 1.0% probucol fed prior to, during and after Fe-NTA treatment in DEN-initiated animals afforded >65% protection in renal cell tumor incidence. Probucol fed diet pretreatment also resulted a significant and dose dependent inhibition of Fe-NTA induced renal ornithine decarboxylase (ODC) activity. In oxidative stress studies, Fe-NTA alone treatment enhanced lipid peroxidation, accompanied by a decrease in the level of GSH, activities of antioxidants and phase II metabolizing enzymes in kidney concomitant with histolopathological changes. These changes were significantly and dose-dependently alleviated by probucol fed diet. From this data, it can be concluded that probucol can modulates toxic and tumor promoting effects of Fe-NTA and can serve as a potent chemopreventive agent to suppress oxidant induced tissue injury and carcinogenesis, in addition to being a cholesterol lowering and anti-atherogenic drug.
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology
  3. Abdull Razis AF, Noor NM
    Asian Pac J Cancer Prev, 2013;14(7):4235-8.
    PMID: 23991982
    Glucoraphanin is the main glucosinolate found in broccoli and other cruciferous vegetables (Brassicaceae). The objective of the study was to evaluate whether glucoraphanin and its breakdown product sulforaphane, are potent modulators of various phase I and phase II enzymes involved in carcinogen-metabolising enzyme systems in vitro. The glucosinolate glucoraphanin was isolated from cruciferous vegetables and exposed to human hepatoma cell line HepG2 at various concentrations (0-25 μM) for 24 hours. Glucoraphanin at higher concentration (25 μM) decreased dealkylation of methoxyresorufin, a marker for cytochrome P4501 activity; supplementation of the incubation medium with myrosinase (0.018 U), the enzyme that converts glucosinolate to its corresponding isothiocyanate, showed minimal induction in this enzyme activity at concentration 10 μM. Quinone reductase and glutathione S-transferase activities were unaffected by this glucosinolate; however, supplementation of the incubation medium with myrosinase elevated quinone reductase activity. It may be inferred that the breakdown product of glucoraphanin, in this case sulforaphane, is superior than its precursor in modulating carcinogen- metabolising enzyme systems in vitro and this is likely to impact on the chemopreventive activity linked to cruciferous vegetable consumption.
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology
  4. Weng-Yew W, Selvaduray KR, Ming CH, Nesaretnam K
    Nutr Cancer, 2009;61(3):367-73.
    PMID: 19373610 DOI: 10.1080/01635580802582736
    Previous studies have revealed that tocotrienol-rich fractions (TRF) from palm oil inhibit the proliferation and the growth of solid tumors. The anticancer activity of TRF is said to be caused by several mechanisms, one of which is antiangiogenesis. In this study, we looked at the antiangiogenic effects of TRF. In vitro investigations of the antiangiogenic activities of TRF, delta-tocotrienol (deltaT3), and alpha-tocopherol (alphaToc) were carried out in human umbilical vein endothelial cells (HUVEC). TRF and deltaT3 significantly inhibited cell proliferation from 4 microg/ml onward (P < 0.05). Cell migration was inhibited the most by deltaT3 at 12 microg/ml. Anti-angiogenic properties of TRF were carried out further in vivo using the chick embryo chorioallantoic membrane (CAM) assay and BALB/c mice model. TRF at 200 microg/ml reduced the vascular network on CAM. TRF treatment of 1 mg/mouse significantly reduced 4T1 tumor volume in BALB/c mice. TRF significantly reduced serum vascular endothelial growth factor (VEGF) level in BALB/c mice. In conclusion, this study showed that palm tocotrienols exhibit anti-angiogenic properties that may assist in tumor regression.
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology*
  5. Mooi LY, Yew WT, Hsum YW, Soo KK, Hoon LS, Chieng YC
    Asian Pac J Cancer Prev, 2012;13(4):1177-82.
    PMID: 22799301
    Protein kinase C (PKC) has been implicated in carcinogenesis and displays variable expression profiles during cancer progression. Studies of dietary phytochemicals on cancer signalling pathway regulation have been conducted to search for potent signalling regulatory agents. The present study was designed to evaluate any suppressive effect of maslinic acid on PKC expression in human B-lymphoblastoid cells (Raji cells), and to identify the PKC isoforms expressed. Effects of maslinic acid on PKC activity were determined using a PepTag assay for non-radioactive detection of PKC. The highest expression in Raji cells was obtained at 20 nM PMA induced for 6 hours. Suppressive effects of maslinic acid were compared with those of four PKC inhibitors (H- 7, rottlerin, sphingosine, staurosporine) and two triterpenes (oleanolic acid and ursolic acid). The IC₅₀ values achieved for maslinic acid, staurosporine, H-7, sphingosine, rottlerin, ursolic acid and oleanolic acid were 11.52, 0.011, 0.767, 2.45, 5.46, 27.93 and 39.29 μM, respectively. Four PKC isoforms, PKC βI, βII, δ, and ζ, were identified in Raji cells via western blotting. Maslinic acid suppressed the expression of PKC βI, δ, and ζ in a concentration-dependent manner. These preliminary results suggest promising suppressive effects of maslinic acid on PKC activity in Raji cells. Maslinic acid could be a potent cancer chemopreventive agent that may be involved in regulating many downstream signalling pathways that are activated through PKC receptors.
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology
  6. Yeong LT, Abdul Hamid R, Saiful Yazan L, Khaza'ai H, Awang Hamsin DE
    Nat Prod Res, 2014;28(22):2026-30.
    PMID: 24836304 DOI: 10.1080/14786419.2014.917415
    An isomeric mixture of α,β-amyrin (triterpene) and 2-methoxy-6-undecyl-1,4-benzoquinone (quinone) isolated from the Ardisia crispa root hexane (ACRH) extract was reported to possess anti-inflammatory properties in vivo. Considering the close association between inflammation and cancer, on top of the lack of antitumour study on those compounds, this study aimed to determine the potential of both compounds against tumour promotion in vitro, either as single agent or in combination. Triterpene and quinone compounds, as well as triterpene-quinone fraction (TQF) and ACRH were subjected to inhibition of Epstein-Barr virus-early antigen (EBV-EA) activation assay for that purpose. Compared with curcumin (positive control), inhibition against EBV-EA activation occurred in the order: ACRH>TQF ≥ curcumin>α,β-amyrin ≥ 2-methoxy-6-undecyl-1,4-benzoquinone. These findings reported, for the first time, the antitumor-promoting effect of α,β-amyrin and 2-methoxy-6-undecyl-1,4-benzoquinone from the roots of A. crispa, which was enhanced when both compounds act in synergy.
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology*
  7. Karimian H, Fadaeinasab M, Moghadamtousi SZ, Hajrezaei M, Zahedifard M, Razavi M, et al.
    Cell Physiol Biochem, 2015;36(3):988-1003.
    PMID: 26087920 DOI: 10.1159/000430273
    BACKGROUND: Tanacetum polycephalum L. Schultz-Bip is a member of the Asteraceae family. This study evaluated the chemopreventive effect of a T. polycephalum hexane extract (TPHE) using in in vivo and in vitro models.

    METHODS AND RESULTS: Five groups of rats: normal control, cancer control, TPHE low dose, TPHE high dose and positive control (tamoxifen) were used for the in vivo study. Histopathological examination showed that TPHE significantly suppressed the carcinogenic effect of LA7 tumour cells. The tumour sections from TPHE-treated rats demonstrated significantly reduced expression of Ki67 and PCNA compared to the cancer control group. Using a bioassay-guided approach, the cytotoxic compound of TPHE was identified as a tricyclic sesquiterpene lactone, namely, 8β- hydroxyl- 4β, 15- dihydrozaluzanin C (HDZC). Signs of early and late apoptosis were observed in MCF7 cells treated with HDZC and were attributed to the mitochondrial intrinsic pathway based on the up-regulation of Bax and the down-regulation of Bcl-2. HDZC induced cell cycle arrest in MCF7 cells and increased the expression of p21 and p27 at the mRNA and protein levels.

    CONCLUSION: This results of this study substantiate the anticancer effect of TPHE and highlight the involvement of HDZC as one of the contributing compounds that act by initiating mitochondrial-mediated apoptosis.

    Matched MeSH terms: Anticarcinogenic Agents/pharmacology*
  8. Pabalan N, Jarjanazi H, Ozcelik H
    J Gastrointest Cancer, 2014 Sep;45(3):334-41.
    PMID: 24756832 DOI: 10.1007/s12029-014-9610-2
    BACKGROUND: Reported associations of capsaicin with gastric cancer development have been conflicting. Here, we examine 10 published articles that explore these associations using 2,452 cases and 3,996 controls.

    METHODS: We used multiple search strategies in MEDLINE through PubMed to seek for suitable articles that had case-control design with gastric cancer as outcome.

    RESULTS: The outcomes of our study shows protection (odds ratio [OR] 0.55, P = 0.003) and susceptibility (OR 1.94, P = 0.0004), both significant with low and medium-high intake of capsaicin, respectively, although under relatively heterogeneous conditions (P(heterogeneity) = <0.0001). Outlier analysis resulted in loss of overall heterogeneity (P = 0.14) without affecting the pooled ORs. Among the subgroups, low intake elicited protection in both Korean (OR 0.37) and Mexican (OR 0.63) populations while high intake rendered these subgroups susceptible (OR 2.96 and OR 1.57, respectively). These subgroup values were highly significant (P = 0.0001-0.01) obtained in heterogeneous conditions (P(heterogeneity) 

    Matched MeSH terms: Anticarcinogenic Agents/pharmacology
  9. Kadir NH, David R, Rossiter JT, Gooderham NJ
    Toxicology, 2015 Aug 6;334:59-71.
    PMID: 26066520 DOI: 10.1016/j.tox.2015.06.002
    Cruciferous vegetable consumption correlates with reduced risk of cancer. This chemopreventative activity may involve glucosinolates and their hydrolysis products. Glucosinolate-derived isothiocyanates have been studied for their toxicity and chemopreventative properties, but other hydrolysis products (epithionitriles and nitriles) have not been thoroughly examined. We report that these hydrolysis products differ in their cytotoxicity to human cells, with toxicity most strongly associated with isothiocyanates rather than epithionitriles and nitriles. We explored mechanisms of this differential cytotoxicity by examining the role of oxidative metabolism, oxidative stress, mitochondrial permeability, reduced glutathione levels, cell cycle arrest and apoptosis. 2-Propenylisothiocyanate and 3-butenylisothiocyanate both inhibited cytochome P450 1A (CYP1A) enzyme activity in CYP expressing MCL-5 cells at high cytotoxic doses. Incubation of MCL-5 cells with non-cytotoxic doses of 2-propenylisothiocyanate for 24h resulted in a dose-dependent inhibition of ethoxyresorufin O-deethylase, yet failed to affect CYP1A1 mRNA expression indicating interference with enzyme activity rather than inhibition of transcription. Increased reactive oxygen species (ROS) production was observed only for 2-propenylisothiocyanate treatment. 2-Propenylisothiocyanate treatment lowered reduced glutathione levels whereas no changes were noted with 3,4-epithiobutylnitrile. Cell cycle analysis showed that 2-propenylisothiocyanate induced a G2/M block whereas other hydrolysis products showed only marginal effects. We found that 2-propenylisothiocyanate and 3-butenylisothiocyanate induced cell death predominantly via necrosis whereas, 3,4-epithiobutylnitrile promoted both necrosis and apoptosis. Thus the activity of glucosinolate hydrolysis products includes cytotoxicity that is compound-class specific and may contribute to their putative chemoprotection properties.
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology*
  10. Ho KL, Chong PP, Yazan LS, Ismail M
    J Med Food, 2012 Dec;15(12):1096-102.
    PMID: 23216109 DOI: 10.1089/jmf.2012.2245
    Vanillin is the substance responsible for the flavor and smell of vanilla, a widely used flavoring agent. Previous studies reported that vanillin is a good antimutagen and anticarcinogen. However, there are also some contradicting findings showing that vanillin was a comutagen and cocarcinogen. This study investigated whether vanillin is an anticarcinogen or a cocarcinogen in rats induced with azoxymethane (AOM). Rats induced with AOM will develop aberrant crypt foci (ACF). AOM-challenged rats were treated with vanillin orally and intraperitoneally at low and high concentrations and ACF density, multiplicity, and distribution were observed. The gene expression of 14 colorectal cancer-related genes was also studied. Results showed that vanillin consumed orally had no effect on ACF. However, high concentrations (300 mg/kg body weight) of vanillin administered through intraperitoneal injection could increase ACF density and ACF multiplicity. ACF were mainly found in the distal colon rather than in the mid-section and proximal colon. The expression of colorectal cancer biomarkers, protooncogenes, recombinational repair, mismatch repair, and cell cycle arrest, and tumor suppressor gene expression were also affected by vanillin. Vanillin was not cocarcinogenic when consumed orally. However, it was cocarcinogenic when being administered intraperitoneally at high concentration. Hence, the use of vanillin in food should be safe but might have cocarcinogenic potential when it is used in high concentration for therapeutic purposes.
    Matched MeSH terms: Anticarcinogenic Agents/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links