A blocking test was incorporated into the commercial IDEIA Adenovirus test (DAKO Diagnostics Ltd., Cambridgeshire, UK) to detect false positive results when faecal specimens were tested for adenovirus antigen. Immune rabbit serum raised against pooled adenovirus particles from human faecal specimens, together with the pre-immune serum, was used. Assessment of positive showed that false positives were produced under two different conditions: when results were based on visual determination instead of a cut-off value determined from photometric reading, and when absorbance values were not immediately read at the end of the test. Under the optimum condition for reading and assessment of test results (immediate reading and photometric determination), 11% of 65 adenovirus-positive samples were checked by the blocking ELISA as false positives. The rest of the specimens showed blocking of positive absorbance values by 70 to 98%. ELISA was found to be more sensitive than immune electron microscopy on samples with lower antigen concentration.
Archival oral tissues comprising 51 squamous cell carcinomas, 18 non-malignant lesions and 7 normal mucosa samples were investigated for human herpesvirus-6 (HHV-6)-encoded antigens and HHV-6 DNA. The virus-specific antigens were detected by an immunohistochemical method using monoclonal antibodies. Two further techniques used for HHV-6 DNA detection included the polymerase chain reaction (PCR) with virus-specific primers and in situ hybridization using digoxigenin-labelled oligonucleotides specific for HHV-6A and HHV-6B genotypes. A high proportion (79-80%) of the squamous cell carcinomas were positive for HHV-6 with the various detection methods. In cases of lichen planus and leukoplakia a high prevalence rate (67-100%) was noted with in situ hybridization and immunohistochemical techniques but a lower proportion (22-33%) was detected with the PCR method. All 7 normal tissues tested were negative for HHV-6. The HHV-6 variant B was found in 60% of the oral carcinoma tissues analysed. The study demonstrates the frequent presence of HHV-6 in neoplastic and non-malignant lesions of the oral cavity. While the role of HHV-6 in oral mucosal tissues remains to be determined, the in vitro tumorigenic potential of the virus suggests a possible role in the etiopathogenesis of oral lesions.
The vp28 gene encoding an envelope protein (28 kDa) of white spot syndrome virus (WSSV) was amplified from WSSV-infected tiger shrimp that originated from Malaysia. Recombinant VP28 protein (r-28) was expressed in Escherichia coli and used as an antigen for preparation of monoclonal antibodies (MAbs). Three murine MAbs (6F6, 6H4 and 9C10) that were screened by r-28 antigen-based enzyme-linked immunosorbent assay (ELISA) were also able to recognize viral VP28 protein as well as r-28 on Western blot. Three non-overlapping epitopes of VP28 protein were determined using the MAbs in competitive ELISA; thus, an antigen-capture ELISA (Ac-ELISA) was developed by virtue of these MAbs. Ac-ELISA can differentiate WSSV-infected shrimp from uninfected shrimp and was further confirmed by a polymerase chain reaction (PCR) and Western blot. Approximately 400 pg of purified WSSV sample and 20 pg of r-28 could be detected by Ac-ELISA, which is comparable in sensitivity to PCR assay but more sensitive than Western blot in the detection of purified virus. Hemolymph and tissue homogenate samples collected from a shrimp farm in Malaysia during December 2000 and July 2001 were also detected by Ac-ELISA and PCR with corroborating results.
BACKGROUND: The Epstein-Barr virus (EBV) is consistently detected in patients with nasopharyngeal carcinoma. To determine whether EBV infection is an early, initiating event in the development of this malignant tumor, we screened nasopharyngeal-biopsy samples, most of which were archival, for preinvasive lesions, including dysplasia and carcinoma in situ. Preinvasive lesions were found in 11 samples, which were tested for the presence of EBV.
METHODS: EBV infection was detected with in situ hybridization for EBV-encoded RNAs (EBERs) and by immunohistochemical staining for latent membrane protein 1 (LMP-1). The larger samples were also tested for the EBV genome with the use of Southern blotting. The expression of specific EBV RNAs was determined by the amplification of complementary DNA with the polymerase chain reaction.
RESULTS: Evidence of EBV infection was detected in all 11 tissue samples with dysplasia or carcinoma in situ. EBERs were identified in all eight samples tested, and LMP-1 was detected in all six of the tested samples. Six of the seven samples tested for the EBV termini contained clonal EBV DNA: Transcription of the latent EBV gene products, EBV nuclear antigen 1, LMP-1, LMP-2A, and the BamHI-A fragment, was detected in most of the samples. Viral proteins characteristic of lytic lesions were not detected.
CONCLUSIONS: Preinvasive lesions of the nasopharynx are infected with EBV. The EBV DNA is clonal, indicating that the lesions represent a focal cellular growth that arose from a single EBV-infected cell and that EBV infection is an early, possibly initiating event in the development of nasopharyngeal carcinoma. Preinvasive lesions contain EBV RNAs that are characteristic of latent infection but not the viral proteins that are characteristic of lytic infection. The detection of the EBV-transforming gene, LMP-1, in all the neoplastic cells suggests that its expression is essential for preinvasive epithelial proliferations associated with nasopharyngeal carcinoma.
Besides causing mild hand, foot and mouth infections, Enterovirus A71 (EV-A71) is associated with neurological complications and fatality. With concerns about rising EV-A71 virulence, there is an urgency for more effective vaccines. The live attenuated vaccine (LAV) is a more valuable vaccine as it can elicit both humoral and cellular immune responses. A miRNA-based vaccine strain (pIY) carrying let-7a and miR-124a target genes in the EV-A71 genome which has a partial deletion in the 5'NTR (∆11 bp) and G64R mutation (3Dp°l) was designed. The viral RNA copy number and viral titers of the pIY strain were significantly lower in SHSY-5Y cells that expressed both let-7a and miR-124a. Inhibition of the cognate miRNAs expressed in RD and SHSY-5Y cells demonstrated de-repression of viral mRNA translation. A previously constructed multiply mutated strain, MMS and the pIY vaccine strain were assessed in their ability to protect 4-week old mice from hind limb paralysis. The MMS showed higher amounts of IFN-γ ex vivo than the pIY vaccine strain. There was absence of EV-A71 antigen in the skeletal muscles and spinal cord micrographs of mice vaccinated with the MMS and pIY strains. The MMS and pIY strains are promising LAV candidates developed against severe EV-A71 infections.
Tioman virus is a newly described bat-urine derived paramyxovirus isolated in Tioman Island, Malaysia in 2001. Hitherto, neither human nor animal infection by this virus has been reported. Nonetheless, its close relationship to another paramyxovirus, the Menangle virus which had caused diseases in humans and pigs [Philbey, A.W., Kirkland, P.D., Ross, A.D., Davis, R.J., Gleeson, A.B., Love, R.J., Daniels, P.W., Gould, A.R., Hyatt, A.D., 1998. An apparently new virus (family Paramyxoviridae) infectious for pigs, humans, and fruit bats. Emerg. Infect. Dis. 4, 269-271], raises the possibility that it may be potentially pathogenic. In this study, mice were experimentally infected with Tioman virus by intraperitoneal and intracerebral routes, and the cellular targets and topographical distribution of viral genome and antigens were examined using in situ hybridization and immunohistochemistry, respectively. The possible association between viral infection and apoptosis was also investigated using the TUNEL assay and immunohistochemistry to FasL, Caspase-3, Caspase-8, Caspase-9 and bcl-2. The results showed that Tioman virus inoculated intracerebrally was neurotropic causing plaque-like necrotic areas, and appeared to preferentially replicate in the neocortex and limbic system. Viral infection of inflammatory cells was also demonstrated. TUNEL and Caspase-3 positivity was found in inflammatory cells but not in neurons, while FasL, Caspase-8 and Caspase-9 were consistently negative. This suggests that neuronal infection was associated with necrosis rather than apoptosis. Moreover, the data suggest that there may be an association between viral infection and apoptosis in inflammatory cells, and that it could, at least in part, involve Caspase-independent pathways. Bcl-2 was expressed in some neurons and inflammatory cells indicating its possible role in anti-apoptosis. There was no evidence of central nervous system infection via the intraperitoneal route.
Until recently, West Nile (WN) and Kunjin (KUN) viruses were classified as distinct types in the Flavivirus genus. However, genetic and antigenic studies on isolates of these two viruses indicate that the relationship between them is more complex. To better define this relationship, we performed sequence analyses on 32 isolates of KUN virus and 28 isolates of WN virus from different geographic areas, including a WN isolate from the recent outbreak in New York. Sequence comparisons showed that the KUN virus isolates from Australia were tightly grouped but that the WN virus isolates exhibited substantial divergence and could be differentiated into four distinct groups. KUN virus isolates from Australia were antigenically homologous and distinct from the WN isolates and a Malaysian KUN virus. Our results suggest that KUN and WN viruses comprise a group of closely related viruses that can be differentiated into subgroups on the basis of genetic and antigenic analyses.