Displaying publications 21 - 25 of 25 in total

Abstract:
Sort:
  1. Rajapakse S, de Silva NL, Weeratunga P, Rodrigo C, Sigera C, Fernando SD
    BMC Complement Altern Med, 2019 Oct 11;19(1):265.
    PMID: 31601215 DOI: 10.1186/s12906-019-2678-2
    BACKGROUND: Carica papaya (CP) extract is becoming popular as an unlicensed herbal remedy purported to hasten recovery in dengue infection, mostly based on observations that it may increase platelet counts. This systematic review and meta-analysis aims to critically analyze the evidence from controlled clinical trials on the efficacy and safety of CP extract in the treatment of dengue infection.

    METHODS: PubMed, LILACS and Google Scholar were searched for randomized or non-randomized trials enrolling patients with suspected or confirmed dengue where CP extract was compared, as a treatment measure, against standard treatment. Recovery of platelet counts as well as other clinical indicators of favourable outcome (duration of hospital stay, prevention of plasma leakage, life threatening complications, and mortality) were assessed.

    RESULTS: Nine studies (India-6, Pakistan-1, Indonesia-1, Malaysia-1) met the inclusion criteria. Seven studies showed an increase in platelet counts in patients receiving CP extract, while one study showed no significant difference between the two groups, and direct comparison was not possible in the remaining study. Serious adverse events were not reported. CP extract may reduce the duration of hospital stay (mean difference - 1.98 days, 95% confidence interval - 1.83 to - 2.12, 3 studies, 580 participants, low quality evidence), and cause improvement in mean platelet counts between the first and fifth day of treatment (mean difference 35.45, 95% confidence interval 23.74 to 47.15, 3 studies, 129 participants, low quality evidence). No evidence was available regarding other clinical outcomes.

    CONCLUSIONS: The clinical value of improvement in platelet count or early discharge is unclear in the absence of more robust indicators of favourable clinical outcome. Current evidence is insufficient to comment on the role of CP extract in dengue. There is a need for further well designed clinical trials examining the effect of CP on platelet counts, plasma leakage, other serious manifestations of dengue, and mortality, with clearly defined outcome measures.

    Matched MeSH terms: Antiviral Agents/administration & dosage*
  2. Kumar V, Narayanan P, Shetty S, Mohammed AP
    BMJ Case Rep, 2021 Mar 01;14(3).
    PMID: 33649026 DOI: 10.1136/bcr-2020-240267
    COVID-19 is caused by the novel SARS-CoV-2 and is a potentially fatal disease that is of great global public health concern. In addition to respiratory symptoms, neurological manifestations have been associated with COVID-19. This is attributed to the neurotropic nature of coronaviruses. The authors present a case of Bell's palsy associated with COVID-19 in a term primigravida.
    Matched MeSH terms: Antiviral Agents/administration & dosage
  3. Mahmood S, Kiong KC, Tham CS, Chien TC, Hilles AR, Venugopal JR
    AAPS PharmSciTech, 2020 Oct 14;21(7):285.
    PMID: 33057878 DOI: 10.1208/s12249-020-01810-0
    Currently, pharmaceutical research is directed wide range for developing new drugs for oral administration to target disease. Acyclovir formulation is having common issues of short half-life and poor permeability, causing messy treatment which results in patient incompliance. The present study formulates a lipid polymeric hybrid nanoparticles for antiviral acyclovir (ACV) agent with Phospholipon® 90G (lecithin), chitosan, and polyethylene glycol (PEG) to improve controlled release of the drugs. The study focused on the encapsulation of the ACV in lipid polymeric particle and their sustained delivery. The formulation developed for the self-assembly of chitosan and lecithin to form a shell encapsulating acyclovir, followed by PEGylation. Optimisation was performed via Box-Behnken Design (BBD), forming nanoparticles with size of 187.7 ± 3.75 nm, 83.81 ± 1.93% drug-entrapped efficiency (EE), and + 37.7 ± 1.16 mV zeta potential. Scanning electron microscopy and transmission electron microscopy images displayed spherical nanoparticles formation. Encapsulation of ACV and complexity with other physical parameters are confirmed through analysis using Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction. Nanoparticle produced was capable of achieving 24-h sustained release in vitro on gastric and intestinal environments. Ex vivo study proved the improvement of acyclovir's apparent permeability from 2 × 10-6 to 6.46 × 10-6 cm s-1. Acyclovir new formulation was achieved to be stable up to 60 days for controlled release of the drugs. Graphical abstract.
    Matched MeSH terms: Antiviral Agents/administration & dosage*
  4. Kow CS, Aldeyab M, Hasan SS
    J Med Virol, 2021 04;93(4):1860-1861.
    PMID: 33118617 DOI: 10.1002/jmv.26638
    Matched MeSH terms: Antiviral Agents/administration & dosage*
  5. Kow CS, Hasan SS
    Int Immunopharmacol, 2021 Apr;93:107415.
    PMID: 33540249 DOI: 10.1016/j.intimp.2021.107415
    Matched MeSH terms: Antiviral Agents/administration & dosage
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links