METHODS: A retrospective review of consecutive HCV patients treated with PegIFN/RBV in 2004 to 2012.
RESULTS: A total of 273 patients received treatment. The mean age was 44.16 ± 10.5 years and 76% were male. The top 2 self-reported risks were blood or blood product transfusion before 1994 and injection drug use, found in 57.1% of patients. The predominant HCV genotype (GT) was 3 at 60.6%, second was GT1 at 36.1% and other GTs were uncommon at about 1% or less. About half of our patients have high baseline viral load (>800,000 iu/ml), 18.3% had liver cirrhosis and 22.3% had HIV co-infection. Co-morbid illness was found in 42.9%, hypertension and type 2 diabetes were the two most common. The overall sustained virological response (SVR) by intention-to-treat analysis were 54.9% (n=150/273), 41.2% (40/97) for GT1, 100% (5/5) for GT2 and 62% (101/163) for GT3. Subgroup analysis for HCV monoinfected, treatment naïve showed SVR of 49.2% (31/63) for GT1, 100% (5/5) for GT2 and 67% (69/103) for GT3. In HCV mono-infected and treatment experienced (n=29), the SVR was 28.6% (4/14) for GT1, 21.4% (69/103) for GT3. In the HIV/HCV co-infected, treatment naïve (n=56), the SVR was 28.6% (4/14) for GT1 and 64.3% (27/42) for GT3. Treatment naïve GT3 mono-infected patients had a statistically significant higher SVR compared to treatment experienced patients (P=0.001). In GT3 patients who achieved rapid virological response, the SVR was significantly higher at 85.2% (P< 0.001). The SVR for cirrhotics were low especially for GT1 at 21% (4/19) and 31% (4/13) based on all patients and treatment naïve HCV monoinfected respectively. In GT3 cirrhotics the corresponding SVR were 57.1% (16/28) and 60.9% (14/23). Premature discontinuation rate was 21.2% with the majority due to intolerable adverse events at 12.1%.
CONCLUSIONS: In our routine clinical practice, the HCV patients we treated were young, predominantly of GT3 and many had difficult-to-treat clinical characteristics. The SVR of our patients were below those reported in Asian clinical trials but in keeping with some "real world" data.
METHODS: We randomly assigned inpatients with Covid-19 equally between one of the trial drug regimens that was locally available and open control (up to five options, four active and the local standard of care). The intention-to-treat primary analyses examined in-hospital mortality in the four pairwise comparisons of each trial drug and its control (drug available but patient assigned to the same care without that drug). Rate ratios for death were calculated with stratification according to age and status regarding mechanical ventilation at trial entry.
RESULTS: At 405 hospitals in 30 countries, 11,330 adults underwent randomization; 2750 were assigned to receive remdesivir, 954 to hydroxychloroquine, 1411 to lopinavir (without interferon), 2063 to interferon (including 651 to interferon plus lopinavir), and 4088 to no trial drug. Adherence was 94 to 96% midway through treatment, with 2 to 6% crossover. In total, 1253 deaths were reported (median day of death, day 8; interquartile range, 4 to 14). The Kaplan-Meier 28-day mortality was 11.8% (39.0% if the patient was already receiving ventilation at randomization and 9.5% otherwise). Death occurred in 301 of 2743 patients receiving remdesivir and in 303 of 2708 receiving its control (rate ratio, 0.95; 95% confidence interval [CI], 0.81 to 1.11; P = 0.50), in 104 of 947 patients receiving hydroxychloroquine and in 84 of 906 receiving its control (rate ratio, 1.19; 95% CI, 0.89 to 1.59; P = 0.23), in 148 of 1399 patients receiving lopinavir and in 146 of 1372 receiving its control (rate ratio, 1.00; 95% CI, 0.79 to 1.25; P = 0.97), and in 243 of 2050 patients receiving interferon and in 216 of 2050 receiving its control (rate ratio, 1.16; 95% CI, 0.96 to 1.39; P = 0.11). No drug definitely reduced mortality, overall or in any subgroup, or reduced initiation of ventilation or hospitalization duration.
CONCLUSIONS: These remdesivir, hydroxychloroquine, lopinavir, and interferon regimens had little or no effect on hospitalized patients with Covid-19, as indicated by overall mortality, initiation of ventilation, and duration of hospital stay. (Funded by the World Health Organization; ISRCTN Registry number, ISRCTN83971151; ClinicalTrials.gov number, NCT04315948.).
METHODS: In this retrospective multicenter study conducted from 2016-2019, enrolled patients were divided into 2 treatment groups. Group 1 patients were started on Antiviral drug (oseltamivir) alone therapy. Group 2 patients were initiated on Antiviral drug (oseltamivir) in combination with Antibiotic therapy. Using acute respiratory illness scoring, symptom severity score was assessed daily for 8 symptoms namely, fever, fatigue, headache, cough, sore throat, wheezing, muscle ache and nasal congestion. For each symptom the severity was scored from scale 0-3. Results: Overall mean ARI severity score was statistically significantly lower (p less than 0.05) on day 2 (14.65-vs-13.68), day 3 (12.95-vs-11.67) and day 4 (10.31-vs-9.12 ) for influenza-A (non-H1N1) while day 3 (12.52-vs-11.87) and day 4 (11.21-vs-10.18) for influenza-B patients for patients who were initiated on oseltamivir-antibiotic combination therapy. Fever, cough and nasal congestion showed statistically significant improvement within 4 days of initiation of combination treatment. Fatigue, sore throat and muscle ache improvement pattern was same for both treatment protocols.
CONCLUSION: Oseltamivir-antibiotic combination treatment showed early resolution of some symptoms with cumulatively reduced mean symptom severity score in severe influenza infection hospitalized patients.
METHODS: STORM-C-1 is a two-stage, open-label, phase 2/3 single-arm clinical trial in six public academic and non-academic centres in Malaysia and four public academic and non-academic centres in Thailand. Patients with HCV with compensated cirrhosis (Metavir F4 and Child-Turcotte-Pugh class A) or without cirrhosis (Metavir F0-3) aged 18-69 years were eligible to participate, regardless of HCV genotype, HIV infection status, previous interferon-based HCV treatment, or source of HCV infection. Once daily ravidasvir (200 mg) and sofosbuvir (400 mg) were prescribed for 12 weeks for patients without cirrhosis and for 24 weeks for those with cirrhosis. The primary endpoint was sustained virological response at 12 weeks after treatment (SVR12; defined as HCV RNA <12 IU/mL in Thailand and HCV RNA <15 IU/mL in Malaysia at 12 weeks after the end of treatment). This trial is registered with ClinicalTrials.gov, number NCT02961426, and the National Medical Research Register of Malaysia, NMRR-16-747-29183.
FINDINGS: Between Sept 14, 2016, and June 5, 2017, 301 patients were enrolled in stage one of STORM-C-1. 98 (33%) patients had genotype 1a infection, 27 (9%) had genotype 1b infection, two (1%) had genotype 2 infection, 158 (52%) had genotype 3 infection, and 16 (5%) had genotype 6 infection. 81 (27%) patients had compensated cirrhosis, 90 (30%) had HIV co-infection, and 99 (33%) had received previous interferon-based treatment. The most common treatment-emergent adverse events were pyrexia (35 [12%]), cough (26 [9%]), upper respiratory tract infection (23 [8%]), and headache (20 [7%]). There were no deaths or treatment discontinuations due to serious adverse events related to study drugs. Of the 300 patients included in the full analysis set, 291 (97%; 95% CI 94-99) had SVR12. Of note, SVR12 was reported in 78 (96%) of 81 patients with cirrhosis and 153 (97%) of 158 patients with genotype 3 infection, including 51 (96%) of 53 patients with cirrhosis. There was no difference in SVR12 rates by HIV co-infection or previous interferon treatment.
INTERPRETATION: In this first stage, ravidasvir plus sofosbuvir was effective and well tolerated in this diverse adult population of patients with chronic HCV infection. Ravidasvir plus sofosbuvir has the potential to provide an additional affordable, simple, and efficacious public health tool for large-scale implementation to eliminate HCV as a cause of morbidity and mortality.
FUNDING: National Science and Technology Development Agency, Thailand; Department of Disease Control, Ministry of Public Health, Thailand; Ministry of Health, Malaysia; UK Aid; Médecins Sans Frontières (MSF); MSF Transformational Investment Capacity; FIND; Pharmaniaga; Starr International Foundation; Foundation for Art, Research, Partnership and Education; and the Swiss Agency for Development and Cooperation.