METHODS: The Director of each NICU was requested to complete the e-questionnaire between February 2019 and August 2021.
RESULTS: We received 848 responses, from all geographic regions and resource settings. Variations in most thermoregulation and golden hour practices were observed. Using a polyethylene plastic wrap, commencing humidity within 60 min of admission, and having local protocols were the most consistent practices (>75%). The odds for the following practices differed in NICUs resuscitating infants from 22 to 23 weeks GA compared to those resuscitating from 24 to 25 weeks: respiratory support during resuscitation and transport, use of polyethylene plastic wrap and servo-control mode, commencing ambient humidity >80% and presence of local protocols.
CONCLUSION: Evidence-based practices on thermoregulation and golden hour stabilisation differed based on the unit's region, country's income status and the lowest GA of infants resuscitated. Future efforts should address reducing variation in practice and aligning practices with international guidelines.
IMPACT: A wide variation in thermoregulation and golden hour practices exists depending on the income status, geographic region and lowest gestation age of infants resuscitated. Using a polyethylene plastic wrap, commencing humidity within 60 min of admission and having local protocols were the most consistent practices. This study provides a comprehensive description of thermoregulation and golden hour practices to allow a global comparison in the delivery of best evidence-based practice. The findings of this survey highlight a need for reducing variation in practice and aligning practices with international guidelines for a comparable health care delivery.
METHODS: Ten Japanese and ten Malaysian males with matched physical characteristics (height, body weight, and peak oxygen consumption) participated in this study. Participants performed exercise for 60 min at 55% peak oxygen uptake followed by a 30-min recovery at 32°C and 70% relative air humidity with hydration (4 times each, 3 mL per kg body weight, 37°C) or without hydration. Rectal temperature, skin temperature, heart rate, skin blood flow, and blood pressure were measured continuously. The percentage of body weight loss and total sweat loss were calculated from body weight measurements. The percentage change in plasma volume was estimated from hemoglobin concentration and hematocrit.
RESULTS: Malaysian participants had a significantly lower rectal temperature, a smaller reduction in plasma volume, and a lower heart rate in the hydrated condition than in the non-hydrated condition at the end of exercise (P <0.05), whereas Japanese participants showed no difference between the two hydration conditions. Hydration induced a greater total sweat loss in both groups (P <0.05), and the percentage of body weight loss in hydrated Malaysians was significantly less than in hydrated Japanese (P <0.05). A significant interaction between groups and hydration conditions was observed for the percentage of mean cutaneous vascular conductance during exercise relative to baseline (P <0.05).
CONCLUSIONS: The smaller reduction in plasma volume and percentage body weight loss in hydrated Malaysians indicated an advantage in body fluid regulation. This may enable Malaysians to reserve more blood for circulation and heat dissipation and thereby maintain lower rectal temperatures in a hydrated condition.