Displaying publications 21 - 30 of 30 in total

Abstract:
Sort:
  1. Abir T, Kalimullah NA, Osuagwu UL, Yazdani DMN, Mamun AA, Husain T, et al.
    Int J Environ Res Public Health, 2020 Jul 21;17(14).
    PMID: 32708161 DOI: 10.3390/ijerph17145252
    This study investigated the perception and awareness of risk among adult participants in Bangladesh about Coronavirus Disease 2019 (COVID-19). During the lockdown era in Bangladesh at two different time points, from 26-31 March 2020 (early lockdown) and 11-16 May 2020 (late lockdown), two self-administered online surveys were conducted on 1005 respondents (322 and 683 participants, respectively) via social media. To examine risk perception and knowledge-related factors towards COVID-19, univariate and multiple linear regression models were employed. Scores of mean knowledge (8.4 vs. 8.1, p = 0.022) and perception of risk (11.2 vs. 10.6, p < 0.001) differed significantly between early and late lockdown. There was a significant decrease in perceived risk scores for contracting SARS-Cov-2 [β = -0.85, 95%CI: -1.31, -0.39], while knowledge about SARS-Cov-2 decreased insignificantly [β = -0.22, 95%CI: -0.46, 0.03] in late lockdown compared with early lockdown period. Self-quarantine was a common factor linked to increased perceived risks and knowledge of SARS-Cov-2 during the lockdown period. Any effort to increase public awareness and comprehension of SARS-Cov-2 in Bangladesh will then offer preference to males, who did not practice self-quarantine and are less worried about the propagation of this kind of virus.
    Matched MeSH terms: Coronavirus Infections/transmission
  2. Chaw L, Koh WC, Jamaludin SA, Naing L, Alikhan MF, Wong J
    Emerg Infect Dis, 2020 Nov;26(11):2598-2606.
    PMID: 33035448 DOI: 10.3201/eid2611.202263
    We report the transmission dynamics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) across different settings in Brunei. An initial cluster of SARS-CoV-2 cases arose from 19 persons who had attended the Tablighi Jama'at gathering in Malaysia, resulting in 52 locally transmitted cases. The highest nonprimary attack rates (14.8%) were observed from a subsequent religious gathering in Brunei and in households of attendees (10.6%). Household attack rates from symptomatic case-patients were higher (14.4%) than from asymptomatic (4.4%) or presymptomatic (6.1%) case-patients. Workplace and social settings had attack rates of <1%. Our analyses highlight that transmission of SARS-CoV-2 varies depending on environmental, behavioral, and host factors. We identify red flags for potential superspreading events, specifically densely populated gatherings with prolonged exposure in enclosed settings, persons with recent travel history to areas with active SARS-CoV-2 infections, and group behaviors. We propose differentiated testing strategies to account for differing transmission risk.
    Matched MeSH terms: Coronavirus Infections/transmission
  3. Lam TT, Jia N, Zhang YW, Shum MH, Jiang JF, Zhu HC, et al.
    Nature, 2020 07;583(7815):282-285.
    PMID: 32218527 DOI: 10.1038/s41586-020-2169-0
    The ongoing outbreak of viral pneumonia in China and across the world is associated with a new coronavirus, SARS-CoV-21. This outbreak has been tentatively associated with a seafood market in Wuhan, China, where the sale of wild animals may be the source of zoonotic infection2. Although bats are probable reservoir hosts for SARS-CoV-2, the identity of any intermediate host that may have facilitated transfer to humans is unknown. Here we report the identification of SARS-CoV-2-related coronaviruses in Malayan pangolins (Manis javanica) seized in anti-smuggling operations in southern China. Metagenomic sequencing identified pangolin-associated coronaviruses that belong to two sub-lineages of SARS-CoV-2-related coronaviruses, including one that exhibits strong similarity in the receptor-binding domain to SARS-CoV-2. The discovery of multiple lineages of pangolin coronavirus and their similarity to SARS-CoV-2 suggests that pangolins should be considered as possible hosts in the emergence of new coronaviruses and should be removed from wet markets to prevent zoonotic transmission.
    Matched MeSH terms: Coronavirus Infections/transmission
  4. Aljabali AAA, Bakshi HA, Satija S, Metha M, Prasher P, Ennab RM, et al.
    Pharm Nanotechnol, 2020;8(4):323-353.
    PMID: 32811406 DOI: 10.2174/2211738508999200817163335
    BACKGROUND: The newly emerged coronavirus SARS-CoV-2, first reported in December 2019, has infected about five and a half million people globally and resulted in nearly 9063264 deaths until the 24th of June 2020. Nevertheless, the highly contagious virus has instigated an unimaginably rapid response from scientific and medical communities.

    OBJECTIVES: Pioneering research on molecular mechanisms underlying the viral transmission, molecular pathogenicity, and potential treatments will be highlighted in this review. The development of antiviral drugs specific to SARS-CoV-2 is a complicated and tedious process. To accelerate scientific discoveries and advancement, researchers are consolidating available data from associated coronaviruses into a single pipeline, which can be readily made available to vaccine developers.

    METHODS: In order to find studies evaluating the COVID-19 virus epidemiology, repurposed drugs and potential vaccines, web searches and bibliographical bases have been used with keywords that matches the content of this review.

    RESULTS: The published results of SARS-CoV-2 structures and interactomics have been used to identify potential therapeutic candidates. We illustrate recent publications on SARS-CoV-2, concerning its molecular, epidemiological, and clinical characteristics, and focus on innovative diagnostics technologies in the production pipeline. This objective of this review is to enhance the comprehension of the unique characteristics of SARS-CoV-2 and strengthen future control measures.

    Lay Summary: An innovative analysis is evaluating the nature of the COVID-19 pandemic. The aim is to increase knowledge of possible viral detection methods, which highlights several new technology limitations and advantages. We have assessed some drugs currently for patients (Lopinavir, Ritonavir, Anakinra and Interferon beta 1a), as the feasibility of COVID-19 specific antivirals is not presently known. The study explores the race toward vaccine development and highlights some significant trials and candidates in various clinical phases. This research addresses critical knowledge gaps by identifying repurposed drugs currently under clinical trials. Findings will be fed back rapidly to the researchers interested in COVID 19 and support the evidence and potential of possible therapeutics and small molecules with their mode of action.

    Matched MeSH terms: Coronavirus Infections/transmission
  5. Yan Y, Shin WI, Pang YX, Meng Y, Lai J, You C, et al.
    PMID: 32235575 DOI: 10.3390/ijerph17072323
    The recent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously known as 2019-nCoV) outbreak has engulfed an unprepared world amidst a festive season. The zoonotic SARS-CoV-2, believed to have originated from infected bats, is the seventh member of enveloped RNA coronavirus. Specifically, the overall genome sequence of the SARS-CoV-2 is 96.2% identical to that of bat coronavirus termed BatCoV RaTG13. Although the current mortality rate of 2% is significantly lower than that of SARS (9.6%) and Middle East respiratory syndrome (MERS) (35%), SARS-CoV-2 is highly contagious and transmissible from human to human with an incubation period of up to 24 days. Some statistical studies have shown that, on average, one infected patient may lead to a subsequent 5.7 confirmed cases. Since the first reported case of coronavirus disease 2019 (COVID-19) caused by the SARS-CoV-2 on December 1, 2019, in Wuhan, China, there has been a total of 60,412 confirmed cases with 1370 fatalities reported in 25 different countries as of February 13, 2020. The outbreak has led to severe impacts on social health and the economy at various levels. This paper is a review of the significant, continuous global effort that was made to respond to the outbreak in the first 75 days. Although no vaccines have been discovered yet, a series of containment measures have been implemented by various governments, especially in China, in the effort to prevent further outbreak, whilst various medical treatment approaches have been used to successfully treat infected patients. On the basis of current studies, it would appear that the combined antiviral treatment has shown the highest success rate. This review aims to critically summarize the most recent advances in understanding the coronavirus, as well as the strategies in prevention and treatment.
    Matched MeSH terms: Coronavirus Infections/transmission
  6. Peeri NC, Shrestha N, Rahman MS, Zaki R, Tan Z, Bibi S, et al.
    Int J Epidemiol, 2020 Jun 01;49(3):717-726.
    PMID: 32086938 DOI: 10.1093/ije/dyaa033
    OBJECTIVES: To provide an overview of the three major deadly coronaviruses and identify areas for improvement of future preparedness plans, as well as provide a critical assessment of the risk factors and actionable items for stopping their spread, utilizing lessons learned from the first two deadly coronavirus outbreaks, as well as initial reports from the current novel coronavirus (COVID-19) epidemic in Wuhan, China.

    METHODS: Utilizing the Centers for Disease Control and Prevention (CDC, USA) website, and a comprehensive review of PubMed literature, we obtained information regarding clinical signs and symptoms, treatment and diagnosis, transmission methods, protection methods and risk factors for Middle East respiratory syndrome (MERS), severe acute respiratory syndrome (SARS) and COVID-19. Comparisons between the viruses were made.

    RESULTS: Inadequate risk assessment regarding the urgency of the situation, and limited reporting on the virus within China has, in part, led to the rapid spread of COVID-19 throughout mainland China and into proximal and distant countries. Compared with SARS and MERS, COVID-19 has spread more rapidly, due in part to increased globalization and the focus of the epidemic. Wuhan, China is a large hub connecting the North, South, East and West of China via railways and a major international airport. The availability of connecting flights, the timing of the outbreak during the Chinese (Lunar) New Year, and the massive rail transit hub located in Wuhan has enabled the virus to perforate throughout China, and eventually, globally.

    CONCLUSIONS: We conclude that we did not learn from the two prior epidemics of coronavirus and were ill-prepared to deal with the challenges the COVID-19 epidemic has posed. Future research should attempt to address the uses and implications of internet of things (IoT) technologies for mapping the spread of infection.

    Matched MeSH terms: Coronavirus Infections/transmission
  7. Alnuqaydan AM, Almutary AG, Sukamaran A, Yang BTW, Lee XT, Lim WX, et al.
    AAPS PharmSciTech, 2021 Jun 08;22(5):173.
    PMID: 34105037 DOI: 10.1208/s12249-021-02062-2
    Middle East respiratory syndrome (MERS) is a lethal respiratory disease with its first case reported back in 2012 (Jeddah, Saudi Arabia). It is a novel, single-stranded, positive-sense RNA beta coronavirus (MERS-CoV) that was isolated from a patient who died from a severe respiratory illness. Later, it was found that this patient was infected with MERS. MERS is endemic to countries in the Middle East regions, such as Saudi Arabia, Jordan, Qatar, Oman, Kuwait and the United Arab Emirates. It has been reported that the MERS virus originated from bats and dromedary camels, the natural hosts of MERS-CoV. The transmission of the virus to humans has been thought to be either direct or indirect. Few camel-to-human transmissions were reported earlier. However, the mode of transmission of how the virus affects humans remains unanswered. Moreover, outbreaks in either family-based or hospital-based settings were observed with high mortality rates, especially in individuals who did not receive proper management or those with underlying comorbidities, such as diabetes and renal failure. Since then, there have been numerous reports hypothesising complications in fatal cases of MERS. Over the years, various diagnostic methods, treatment strategies and preventive measures have been strategised in containing the MERS infection. Evidence from multiple sources implicated that no treatment options and vaccines have been developed in specific, for the direct management of MERS-CoV infection. Nevertheless, there are supportive measures outlined in response to symptom-related management. Health authorities should stress more on infection and prevention control measures, to ensure that MERS remains as a low-level threat to public health.
    Matched MeSH terms: Coronavirus Infections/transmission
  8. Xiao K, Zhai J, Feng Y, Zhou N, Zhang X, Zou JJ, et al.
    Nature, 2020 07;583(7815):286-289.
    PMID: 32380510 DOI: 10.1038/s41586-020-2313-x
    The current outbreak of coronavirus disease-2019 (COVID-19) poses unprecedented challenges to global health1. The new coronavirus responsible for this outbreak-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-shares high sequence identity to SARS-CoV and a bat coronavirus, RaTG132. Although bats may be the reservoir host for a variety of coronaviruses3,4, it remains unknown whether SARS-CoV-2 has additional host species. Here we show that a coronavirus, which we name pangolin-CoV, isolated from a Malayan pangolin has 100%, 98.6%, 97.8% and 90.7% amino acid identity with SARS-CoV-2 in the E, M, N and S proteins, respectively. In particular, the receptor-binding domain of the S protein of pangolin-CoV is almost identical to that of SARS-CoV-2, with one difference in a noncritical amino acid. Our comparative genomic analysis suggests that SARS-CoV-2 may have originated in the recombination of a virus similar to pangolin-CoV with one similar to RaTG13. Pangolin-CoV was detected in 17 out of the 25 Malayan pangolins that we analysed. Infected pangolins showed clinical signs and histological changes, and circulating antibodies against pangolin-CoV reacted with the S protein of SARS-CoV-2. The isolation of a coronavirus from pangolins that is closely related to SARS-CoV-2 suggests that these animals have the potential to act as an intermediate host of SARS-CoV-2. This newly identified coronavirus from pangolins-the most-trafficked mammal in the illegal wildlife trade-could represent a future threat to public health if wildlife trade is not effectively controlled.
    Matched MeSH terms: Coronavirus Infections/transmission
  9. Oong XY, Ng KT, Takebe Y, Ng LJ, Chan KG, Chook JB, et al.
    Emerg Microbes Infect, 2017 Jan 04;6(1):e3.
    PMID: 28050020 DOI: 10.1038/emi.2016.132
    Human coronavirus OC43 (HCoV-OC43) is commonly associated with respiratory tract infections in humans, with five genetically distinct genotypes (A to E) described so far. In this study, we obtained the full-length genomes of HCoV-OC43 strains from two previously unrecognized lineages identified among patients presenting with severe upper respiratory tract symptoms in a cross-sectional molecular surveillance study in Kuala Lumpur, Malaysia, between 2012 and 2013. Phylogenetic, recombination and comparative genomic analyses revealed two distinct clusters diverging from a genotype D-like common ancestor through recombination with a putative genotype A-like lineage in the non-structural protein (nsp) 10 gene. Signature amino acid substitutions and a glycine residue insertion at the N-terminal domain of the S1 subunit of the spike gene, among others, exhibited further distinction in a recombination pattern, to which these clusters were classified as genotypes F and G. The phylogeographic mapping of the global spike gene indicated that the genetically similar HCoV-OC43 genotypes F and G strains were potentially circulating in China, Japan, Thailand and Europe as early as the late 2000s. The transmission network construction based on the TN93 pairwise genetic distance revealed the emergence and persistence of multiple sub-epidemic clusters of the highly prevalent genotype D and its descendant genotypes F and G, which contributed to the spread of HCoV-OC43 in the region. Finally, a more consistent nomenclature system for non-recombinant and recombinant HCoV-OC43 lineages is proposed, taking into account genetic recombination as an important feature in HCoV evolution and classification.
    Matched MeSH terms: Coronavirus Infections/transmission
  10. Hasmi AH, Khoo LS, Koo ZP, Suriani MUA, Hamdan AN, Yaro SWM, et al.
    Forensic Sci Med Pathol, 2020 09;16(3):477-480.
    PMID: 32500339 DOI: 10.1007/s12024-020-00270-z
    During a disease pandemic, there is still a requirement to perform postmortem examinations within the context of legal considerations. The management of the dead from COVID-19 should not impede the medicolegal investigation of the death where required by the authorities and legislation but additional health and safety precautions should be adopted for the necessary postmortem procedures. The authors have therefore used the craniotomy box in an innovative way to enable a safe alternative for skull and brain removal procedures on suspected or confirmed COVID-19 bodies. The craniotomy box technique was tested on a confirmed COVID-19 positive body where a full postmortem examination was performed by a team of highly trained personnel in a negative pressure Biosafety Level 3 (BSL-3) autopsy suite in the National Institute of Forensic Medicine (IPFN) Malaysia. This craniotomy box is a custom-made transparent plastic box with five walls but without a floor. Two circular holes were made in one wall for the placement of arms in order to perform the skull opening procedure. A swab to detect the presence of the SARS-CoV-2 virus was taken from the interior surface of the craniotomy box after the procedure. The result from the test using real-time reverse transcriptase polymerase chain reaction (rRT-PCR) proved that an additional barrier provided respiratory protection by containing the aerosols generated from the skull opening procedure. This innovation ensures procedures performed inside this craniotomy box are safe for postmortem personnel performing high risk autopsies during pandemics.
    Matched MeSH terms: Coronavirus Infections/transmission
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links