Displaying publications 21 - 40 of 62 in total

Abstract:
Sort:
  1. Voglmayr H, Yule CM
    Mycol. Res., 2006 Oct;110(Pt 10):1242-52.
    PMID: 17018253
    During an investigation of submerged leaves and twigs sampled from tropical peat swamp forests located in Peninsular Malaysia, an anamorphic fungus not attributable to a described genus was detected and isolated in pure culture. Conidial ontogeny was thoroughly studied and illustrated using both light and SEM, which revealed a unique conidial morphology. Analysis of partial nuLSU rDNA and ITS data revealed a phylogenetic position within the Xylariales (Ascomycota), but family affiliation remained unclear.
    Matched MeSH terms: DNA, Fungal/genetics
  2. Ismail SI, Batzer JC, Harrington TC, Crous PW, Lavrov DV, Li H, et al.
    Mycologia, 2016 Mar-Apr;108(2):292-302.
    PMID: 26740537 DOI: 10.3852/15-036
    Members of the sooty blotch and flyspeck (SBFS) complex are epiphytic fungi in the Ascomycota that cause economically damaging blemishes of apples worldwide. SBFS fungi are polyphyletic, but approx. 96% of SBFS species are in the Capnodiales. Evolutionary origins of SBFS fungi remain unclear, so we attempted to infer their origins by means of ancestral state reconstruction on a phylogenetic tree built utilizing genes for the nuc 28S rDNA (approx. 830 bp from near the 59 end) and the second largest subunit of RNA polymerase II (RPB2). The analyzed taxa included the well-known genera of SBFS as well as non-SBFS fungi from seven families within the Capnodiales. The non-SBFS taxa were selected based on their distinct ecological niches, including plant-parasitic and saprophytic species. The phylogenetic analyses revealed that most SBFS species in the Capnodiales are closely related to plant-parasitic fungi. Ancestral state reconstruction provided strong evidence that plant-parasitic fungi were the ancestors of the major SBFS lineages. Knowledge gained from this study may help to better understand the ecology and evolution of epiphytic fungi.
    Matched MeSH terms: DNA, Fungal/genetics
  3. Chew AL, Tan YS, Desjardin DE, Musa MY, Sabaratnam V
    Mycologia, 2014 Sep-Oct;106(5):976-88.
    PMID: 24891424 DOI: 10.3852/13-274
    Three new species and one new variety of bioluminescent Mycena collected from Peninsular Malaysia are described herein. All new species belong to Mycena sect. Calodontes in what is known as the Mycena pura complex. Comprehensive descriptions, photographs, illustrations and comparisons with phenetically similar species are provided. Molecular sequences data from the nuclear internal transcribed spacers (ITS-1 and ITS-2, including the 5.8S rRNA) were used to infer relationships within sect. Calodontes. Axenic cultures were obtained to provide data on culture morphology. This is the first published photographic documentation of bioluminescent basidiomes of members of Mycena sect. Calodontes. Also, this addition brings the total known bioluminescent fungi to 77 species.
    Matched MeSH terms: DNA, Fungal/genetics
  4. Chew AL, Tan YS, Desjardin DE, Musa MY, Sabaratnam V
    Mycologia, 2013 Sep-Oct;105(5):1325-35.
    PMID: 23709573 DOI: 10.3852/13-009
    Mycena illuminans Henn. is described and re-evaluated based on recently collected material from peninsular Malaysia, providing comprehensive descriptions, illustrations and photographs. In addition to morphological data, axenic monokaryon and dikaryon cultures were established to provide data on culture morphology and the mating system of the species. Molecular sequences data from the nuclear large subunit (LSU) gene also are presented, confirming that M. illuminans is not a synonym of Mycena chlorophos.
    Matched MeSH terms: DNA, Fungal/genetics
  5. Desjardin DE, Peay KG, Bruns TD
    Mycologia, 2011 Sep-Oct;103(5):1119-23.
    PMID: 21558499 DOI: 10.3852/10-433
    A gasteroid bolete collected recently in Sarawak on the island of Borneo is described as the new species Spongiforma squarepantsii. A comprehensive description, illustrations, phylogenetic placement and a comparison with a closely allied species are provided.
    Matched MeSH terms: DNA, Fungal/genetics
  6. Desjardin DE, Wilson AW, Binder M
    Mycologia, 2009 2 11;100(6):956-61.
    PMID: 19202849
    Hydnangium echinulatum, described originally from a single specimen collected in Malaysia, has been recollected, and based on morphological and molecular characters is recognized as representing a new gasteroid genus of boletes with affinities to the Boletineae, herein named Durianella. Diagnostic features include an epigeous, ovoid, pyramidal-warted, durian fruit-like basidiome with gelatinized glebal locules and a columella that turns indigo blue upon exposure, and subglobose basidiospores with long, curved, thin-walled and collapsible spines. A redescription, phylogenetic analysis and comparison with allied taxa are presented.
    Matched MeSH terms: DNA, Fungal/genetics
  7. Schroers HJ, Geldenhuis MM, Wingfield MJ, Schoeman MH, Yen YF, Shen WC, et al.
    Mycologia, 2005 Mar-Apr;97(2):375-95.
    PMID: 16396346
    Psidium guajava wilt is known from South Africa, Malaysia and Taiwan. The fungus causing this disease, Myxosporium psidii, forms dry chains of conidia on surfaces of pseudoparenchymatous sporodochia, which develop in blisters on bark. Similar sporodochia are characteristic of Nalanthamala madreeya, the type species of Nalanthamala. Nalanthamala, therefore, is the appropriate anamorph genus for Myxosporium psidii, while Myxosporium is a nomen nudum (based on M. croceum). For M. psidii the combination Nalanthamala psidii is proposed. Nalanthamala psidii, the palm pathogen Gliocladium (Penicillium) vermoesenii, another undescribed anamorphic species from palm, two species of Rubrinectria and the persimmon pathogen Acremonium diospyri are monophyletic and belong to the Nectriaceae (Hypocreales) based on partial nuclear large subunit ribosomal DNA (LSU rDNA) analyses. Rubrinectria, therefore, is the teleomorph of Nalanthamala, in which the anamorphs are classified as N. vermoesenii, N. diospyri or Nalanthamala sp. Nalanthamala squamicola, the only other Nalanthamala species, has affinities with the Bionectriaceae and is excluded from this group. Rubrinectria/Nalanthamala species form dimorphic conidiophores and conidia in culture. Fusiform, cylindrical, or allantoid conidia arise in colorless liquid heads on acremonium-like conidiophores; ovoidal conidia with somewhat truncated ends arise in long, persistent, dry chains on penicillate conidiophores. No penicillate but irregularly branched conidiophores were observed in N. diospyri. Conidia of N. psidii that are held in chains are shorter than those of N. madreeya, of which no living material is available. Nalanthamala psidii and N. diospyri are pathogenic specifically to their hosts. They form pale yellow to pale orange or brownish orange colonies, respectively, and more or less white conidial masses. Most strains of Rubrinectria sp., Nalanthamala sp. and N. vermoesenii originate from palm hosts, form mostly greenish or olive-brown colonies and white-to-salmon conidial masses. They form a monophyletic clade to which Nalanthamala psidii and N. diospyri are related based on analyses of the internal transcribed spacer regions and 5.8S rDNA (ITS rDNA), LSU rDNA, and partial beta-tubulin gene. Few polymorphic sites in the ITS rDNA and beta-tubulin gene indicate that Nalanthamala psidii comprises two lineages, one of which has been detected only in South Africa.
    Matched MeSH terms: DNA, Fungal/genetics
  8. Qin J, Yang ZL
    Mycologia, 2016 Jan-Feb;108(1):215-26.
    PMID: 26553778 DOI: 10.3852/15-166
    Three new and one previously described species of Physalacria (Physalacriaceae, Agaricales) are reported from China. Specimens of two additional species described from Malaysia and North America were studied for comparison. Placements of these species were corroborated based on morphological observations and molecular evidence from partial sequences of the nuc rDNA internal transcribed spacer regions (ITS) and the 28S D1-D3 region, and genes for translation elongation factor 1-α (tef1α) and the second largest subunit of RNA polymerase II (rpb2). These new species of Physalacria distributed in subtropical China were found on rotten wood of broadleaf trees or bamboo and possess stipitate-capitate basidiomata with four-spored basidia, clamp connections and smooth, inamyloid basidiospores. To facilitate studies of the genus in Asia, a key is provided for all Physalacria species reported from this region.
    Matched MeSH terms: DNA, Fungal/genetics
  9. Kusai NA, Azmi MM, Zainudin NA, Yusof MT, Razak AA
    Mycologia, 2016 09;108(5):905-914.
    PMID: 27474518
    Setosphaeria rostrata, a common plant pathogen causing leaf spot disease, affects a wide range of plant species, mainly grasses. Fungi were isolated from brown spots on rice leaves throughout Peninsular Malaysia, and 45 isolates were identified as Setosphaeria rostrata The isolates were then characterized using morphological and molecular approaches. The mating type was determined using PCR amplification of the mating type alleles, and isolates of opposite mating types were crossed to examine sexual reproduction. Based on nuclear ribosomal DNA ITS1-5.8S-ITS2 region (ITS) and beta-tubulin (BT2) sequences, two phylogenetic trees were constructed using the maximum likelihood method; S. rostrata was clustered in one well-supported clade. Pathogenicity tests showed that S. rostrata isolates are pathogenic, suggesting that it is the cause of the symptoms. Mating-type analyses indicated that three isolates carried the MAT1-1 allele, and the other 42 isolates carried MAT1-2 After isolates with opposite mating types were crossed on Sach's medium and incubated for 3 wk, six crosses produced pseudothecia that contained eight mature ascospores, and 12 other crosses produced numerous pseudothecia with no ascospores. To our knowledge, this is the first report on S. rostrata isolated from leaf spots on rice.
    Matched MeSH terms: DNA, Fungal/genetics
  10. Tang LP, Lee SS, Zeng NK, Cai Q, Zhang P, Yang ZL
    Mycologia, 2017 12 04;109(4):557-567.
    PMID: 29200380 DOI: 10.1080/00275514.2017.1394789
    Some Amanita specimens collected from Malaysia are critically investigated by morphological examination and molecular analysis of two gene fragments, the nuc rDNA partial 28S (28S) gene and the internal transcriber spacer (ITS1-5.8S-ITS2 = ITS) regions. Six phylogenetic species of Amanita section Caesareae are recognized among the studied collections. One of them is described as new, A. malayensis. Four of the phylogenetic species correspond with existing morphology-based taxa: A. aporema, A. javanica, A. princeps, and A. similis. The remaining species is not described because of the paucity of material. Detailed descriptions and the distribution of these southeastern Asian species are provided, along with a key to the species of section Caesareae from Malaysia.
    Matched MeSH terms: DNA, Fungal/genetics
  11. Avin FA, Bhassu S, Shin TY, Sabaratnam V
    Mol Biol Rep, 2012 Jul;39(7):7355-64.
    PMID: 22327649 DOI: 10.1007/s11033-012-1567-2
    Morphological identification of edible mushrooms can sometimes prove troublesome, because phenotypic variation in fungi can be affected by substrate and environmental factors. One of the most important problems for mushroom breeders is the lack of a systematic consensus tool to distinguish different species, which are sometimes morphologically identical. Basidiomycetes as one of the largest groups of edible mushrooms have become more important in recent times for their medicinal and nutritional properties. Partial rDNA sequences, including the Internal Transcribed Spacer I-5.8SrDNA-Internal Transcribed Spacer II, were used in this study for molecular identification and assessment of phylogenetic relationships between selected edible species of the Basidiomycetes. Phylogenetic trees showed five distinct clades; each clade belonging to a separate family group. The first clade included all the species belonging to the Pleurotaceae (Pleurotus spp.) family; similarly, the second, third, fourth, and fifth clades consist of species from the Agaricaceae (Agaricus sp.), Lyophllaceae (Hypsigygus sp.), Marasmiaceae (Lentinula edodes sp.) and Physalacriaceae (Flammulina velutipes sp.) families, respectively. Moreover, different species of each family were clearly placed in a distinct sub-cluster and a total of 13 species were taken for analysis. Species differentiation was re-confirmed by AMOVA analysis (among the populations: 99.67%; within: 0.33%), nucleotide divergence, haplotyping and P value. Polymorphism occurred throughout the ITS regions due to insertion-deletion and point mutations, and can be clearly differentiated within the families as well as genera. Moreover, this study proves that the sequence of the ITS region is a superior molecular DNA barcode for taxonomic identification of Basidiomycetes.
    Matched MeSH terms: DNA, Fungal/genetics*
  12. Schmid J, Herd S, Hunter PR, Cannon RD, Yasin MSM, Samad S, et al.
    Microbiology (Reading), 1999 Sep;145 ( Pt 9):2405-2413.
    PMID: 10517593 DOI: 10.1099/00221287-145-9-2405
    Epidemiological studies, using the probe Ca3, have shown that in a given patient population a single cluster of genetically related Candida albicans isolates usually predominates. The authors have investigated whether these local clusters are part of a single group, geographically widespread and highly prevalent as an aetiological agent of various types of candidiasis. An unrooted neighbour-joining tree of 266 infection-causing C. albicans isolates (each from a different individual) from 12 geographical regions in 6 countries was created, based on genetic distances generated by Ca3 fingerprinting. Thirty-seven per cent of all isolates formed a single genetically homogeneous cluster (cluster A). The remainder of isolates were genetically diverse. Using the maximum branch length within cluster A as a cut-off, they could be divided into 37 groups, whose prevalence ranged between 0.3% and 9%. Strains from cluster A were highly prevalent in all but one geographical region, with a mean prevalence across all regions of 41%. When isolates were separated into groups based on patient characteristics or type of infection, strains from cluster A had a prevalence exceeding 27% in each group, and their mean prevalence was 43% across all patient characteristics. These data provide evidence that cluster A constitutes a general-purpose genotype, which is geographically widespread and acts as a predominant aetiological agent of all forms of candidiasis in all categories of patients surveyed.
    Matched MeSH terms: DNA, Fungal/genetics
  13. Chehri K, Salleh B, Zakaria L
    Microb Ecol, 2015 Apr;69(3):457-71.
    PMID: 25238930 DOI: 10.1007/s00248-014-0494-2
    Members of Fusarium solani species complex (FSSC) have been known as plant, animal, and human pathogens. Nevertheless, the taxonomic status of such an important group of fungi is still very confusing and many new species as well as lineages have been elucidated recently. Unfortunately, most of the new taxa came from temperate and subtropical regions. Therefore, the objectives of the present study were to identify strains of FSSC recovered from different sources in Malaysia. In the present study, 55 strains belonging to the FSSC were examined and phylogenetically analyzed on the basis of internal transcribed spacer (ITS) regions and partial translation elongation factor-1 (TEF-1α) sequences. Based on morphological features, a total of 55 strains were selected for molecular studies. Based on morphological features, the strains were classified into four described Fusarium species, namely Fusarium keratoplasticum, Fusarium falciforme, FSSC 5, and Fusarium cf. ensiforme, and one unknown phylogenetic species was introduced. Although the data obtained from morphological and molecular studies sufficiently supported each other, the phylogenetic trees based on ITS and TEF-1α dataset clearly distinguished closely related species and distinctly separated all morphological taxa. All members of FSSC in this research were reported for the first time for Malaysian mycoflora.
    Matched MeSH terms: DNA, Fungal/genetics
  14. Borman AM, Szekely A, Johnson EM
    Med Mycol, 2017 Jul 01;55(5):563-567.
    PMID: 28204557 DOI: 10.1093/mmy/myw147
    Candida auris has recently emerged as a serious nosocomial health risk, with widespread outbreaks in numerous hospitals worldwide and the existence of geographic region-specific discrete clonal lineages. Here we have compared the rDNA sequences of 24 isolates of Candida auris from 14 different hospital centers in the United Kingdom with those of strains from different international origins present in the public sequence databases. Here we show that UK isolates of C. auris fall into three well-supported clades corresponding to lineages that have previously been reported from India, Malaysia and Kuwait, Japan and Korea, and South Africa, respectively.
    Matched MeSH terms: DNA, Fungal/genetics
  15. Sim JH, Khoo CH, Lee LH, Cheah YK
    J Microbiol Biotechnol, 2010 Apr;20(4):651-8.
    PMID: 20467234
    Garcinia is commonly found in Malaysia, but limited information is available regarding endophytic fungi associated with this plant. In this study, 24 endophytic fungi were successfully recovered from different parts of two Garcinia species. Characterization of endophytic fungi was performed based on the conserved internal transcribed spacer (ITS) region sequence analysis and the antimicrobial properties. Results revealed that fruits of the plant appeared to be the highest inhabitation site (38 %) as compared with others. Glomerella sp., Guignardia sp., and Phomopsis sp. appeared to be the predominant endophytic fungi group in Garcinia mangostana and Garcinia parvifolia. Phylogenetic relationships of the isolated endophytic fungi were estimated from the sequences of the ITS region. On the other hand, antibacterial screening showed 11 of the isolates possessed positive response towards pathogenic and nonpathogenic bacteria. However, there was no direct association between certain antibacterial properties with the specific genus observed.
    Matched MeSH terms: DNA, Fungal/genetics
  16. Liew PW, Jong BC
    J Microbiol Biotechnol, 2008 May;18(5):815-20.
    PMID: 18633276
    Two culture-independent methods, namely ribosomal DNA libraries and denaturing gradient gel electrophoresis (DGGE), were adopted to examine the microbial community of a Malaysian light crude oil. In this study, both 16S and 18S rDNAs were PCR-amplified from bulk DNA of crude oil samples, cloned, and sequenced. Analyses of restriction fragment length polymorphism (RFLP) and phylogenetics clustered the 16S and 18S rDNA sequences into seven and six groups, respectively. The ribosomal DNA sequences obtained showed sequence similarity between 90 to 100% to those available in the GenBank database. The closest relatives documented for the 16S rDNAs include member species of Thermoincola and Rhodopseudomonas, whereas the closest fungal relatives include Acremonium, Ceriporiopsis, Xeromyces, Lecythophora, and Candida. Others were affiliated to uncultured bacteria and uncultured ascomycete. The 16S rDNA library demonstrated predomination by a single uncultured bacterial type by >80% relative abundance. The predomination was confirmed by DGGE analysis.
    Matched MeSH terms: DNA, Fungal/genetics
  17. Lim CS, Tung CH, Rosli R, Chong PP
    J Microbiol Methods, 2008 Dec;75(3):576-8.
    PMID: 18727938 DOI: 10.1016/j.mimet.2008.07.026
    This report describes a modified, cost-effective method of cell wall disruption for the yeast Candida spp., which employs the use of glass beads in a simple sorbitol lysis buffer. This method can be used in conjunction with a commercial RNA or genomic DNA isolation method to obtain high-quality RNA or DNA.
    Matched MeSH terms: DNA, Fungal/genetics
  18. Tay ST, Na SL, Chong J
    J Med Microbiol, 2009 Feb;58(Pt 2):185-191.
    PMID: 19141735 DOI: 10.1099/jmm.0.004242-0
    The genetic heterogeneity and antifungal susceptibility patterns of Candida parapsilosis isolated from blood cultures of patients were investigated in this study. Randomly amplified polymorphic DNA (RAPD) analysis generated 5 unique profiles from 42 isolates. Based on the major DNA fragments of the RAPD profiles, the isolates were identified as RAPD type P1 (29 isolates), P2 (6 isolates), P3 (4 isolates), P4 (2 isolates) and P5 (1 isolate). Sequence analysis of the internal transcribed spacer (ITS) gene of the isolates identified RAPD type P1 as C. parapsilosis, P2 and P3 as Candida orthopsilosis, P4 as Candida metapsilosis, and P5 as Lodderomyces elongisporus. Nucleotide variations in ITS gene sequences of C. orthopsilosis and C. metapsilosis were detected. Antifungal susceptibility testing using Etests showed that all isolates tested in this study were susceptible to amphotericin B, fluconazole, ketoconazole, itraconazole and voriconazole. C. parapsilosis isolates exhibited higher MIC(50) values than those of C. orthopsilosis for all of the drugs tested in this study; however, no significant difference in the MICs for these two Candida species was observed. The fact that C. orthopsilosis and C. metapsilosis were responsible for 23.8 and 4.8 % of the cases attributed to C. parapsilosis bloodstream infections, respectively, indicates the clinical relevance of these newly described yeasts. Further investigations of the ecological niche, mode of transmission and virulence of these species are thus essential.
    Matched MeSH terms: DNA, Fungal/genetics
  19. Tay ST, Tan HW, Na SL, Lim SL
    J Med Microbiol, 2011 Nov;60(Pt 11):1591-1597.
    PMID: 21700741 DOI: 10.1099/jmm.0.032854-0
    In this study, six clinical isolates (two from blood, two from urine and one each from a bronchoalveolar lavage and a vaginal swab) were identified as Candida rugosa based on carbohydrate assimilation profiles using API 20C AUX and ID32 C kits (bioMérieux). Sequence analysis of the D1/D2 domain of the yeasts differentiated the isolates into two subgroups, A and B (three isolates per subgroup), which were closely related (99.1-99.6 % nucleotide similarity) to C. rugosa strain ATCC 10571. Compared with the C. rugosa type strain, the intergenic transcribed spacer (ITS) nucleotide similarity for subgroup A was only 89.2 % (29 mismatches and one deletion) and for subgroup B was 93.7 % (20 mismatches). All isolates grew green colonies on Oxoid Chromogenic Candida Agar, with darker pigmentation observed for subgroup A. All isolates were able to grow at 25-42 °C but not at 45 °C. The isolates had identical enzymic profiles, as determined by API ZYM (bioMérieux) analysis, and produced proteinase. High amphotericin MICs (≥1 µg ml(-1)) were noted for two isolates from each subgroup. Dose-dependent susceptibility to fluconazole (MIC 32 µg ml(-1)) was noted in a blood isolate. The biofilms of the isolates demonstrated increased resistance to amphotericin and fluconazole. The greater ITS sequence variability of subgroup A isolates is in support of this yeast being recognized as a distinct species; however, further verification using more sophisticated molecular approaches is required. A sequence comparison study suggested the association of subgroup A with environmental sources and subgroup B with clinical sources. Accurate identification and antifungal susceptibility testing of C. rugosa are important in view of its decreased susceptibility to amphotericin and fluconazole. The ITS region has been shown to be a valuable region for differentiation of closely related subgroups of C. rugosa.
    Matched MeSH terms: DNA, Fungal/genetics
  20. Yazdanpanah A, Khaithir TM
    J Clin Lab Anal, 2014 Jan;28(1):1-9.
    PMID: 24375729 DOI: 10.1002/jcla.21635
    Candida speciation is vital for epidemiology and management of candidiasis. Nonmolecular conventional methods often fail to identify closely related germ tube positive yeasts from clinical specimens. The present study was conducted to identify these yeasts and to highlight issues in conventional versus molecular methods of identification. A total of 98 germ tube positive yeasts from high vaginal swabs were studied over a 12-month period. Isolates were examined with various methods including growth at 42 °C and 45 °C on Sabouraud dextrose agar (SDA), color development on CHROMagar Candida medium, chlamydospore production on corn meal agar at 25 °C, carbohydrate assimilation using ID 32C system, and polymerase chain reaction using a single pair of primers targeting the hyphal wall protein 1 (Hwp1) gene. Of all the isolates studied, 97 were molecularly confirmed as C. albicans and one isolate was identified as C. dubliniensis. No C. africana was detected in this study. The molecular method used in our study was an accurate and useful tool for discriminating C. albicans, C. dubliniensis, and C. africana. The conventional methods, however, were less accurate and riddled with many issues that will be discussed in further details.
    Matched MeSH terms: DNA, Fungal/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links