Displaying publications 21 - 24 of 24 in total

Abstract:
Sort:
  1. Raihan R, Akbar SMF, Al Mahtab M, Khan MSI, Tabassum S, Tee KK, et al.
    Viral Immunol, 2020 09;33(7):530-534.
    PMID: 32513066 DOI: 10.1089/vim.2019.0198
    Hepatitis B virus (HBV) is a noncytopathic virus and billions of HBV-infected patients live uneventful lives and do not suffer from notable liver damage. However, HBV also causes progressive liver diseases characterized by hepatic inflammation, hepatic fibrosis, and liver cancer in millions of HBV-infected patients. The goal of this study was to evaluate the role of mutant HBV in HBV pathogenesis. In a cohort of 360 chronic HBV-infected patients, mutations at T1762/A1764 of HBV genome were detected in most of the patients with HBV-induced liver cirrhosis and hepatocellular carcinoma. To explore if mutations at T1762/A1764 of HBV genome has any role in progressive liver disease, peripheral blood mononuclear cells (PBMCs) and antigen-presenting dendritic cells (DCs) were isolated from five chronic hepatitis B (CHB) patients with mutations at T1762/A1764 and five comparable patients of CHB without mutations at T1762/A1764. DCs were pulsed with hepatitis B surface antigen (HBsAg). The levels of cytokines produced by PBMCs and DCs as well as nitrite production by DCs were evaluated. Significantly higher levels of interleukin-12, tumor necrosis factor-alpha, interferon-gamma, and transforming growth factor-beta were detected in cultures of PBMCs, DCs, and HBsAg-pulsed DCs from CHB patients with mutations at T1762/A1764 compared with those without mutations (p 
    Matched MeSH terms: Dendritic Cells/immunology
  2. Mohamed SIA, Jantan I, Nafiah MA, Seyed MA, Chan KM
    BMC Complement Altern Med, 2018 Aug 06;18(1):232.
    PMID: 30081891 DOI: 10.1186/s12906-018-2296-4
    BACKGROUND: Dendritic cells (DCs) are unique antigen presenting cells (APC) which play a pivotal role in immunotherapy and induction of an effective immune response against tumors. In the present study, 80% ethanol extract of Phyllanthus amarus was used to generate tumor lysate (TLY) derived from HCT 116 and MCF-7 cancer cell lines via induction of apoptosis. Monocyte-derived DCs were generated ex vivo from the adherent population of peripheral blood mononuclear cells (PBMCs). The generated TLY were used to impulse DCs to investigate its effect on their cellular immune functions including antigen presentation capacity, phagocytic activity, chemotaxis capacity, T-cell proliferation and cytokines release.

    METHODS: The effect of P. amarus-generated TLY on DCs maturation was evaluated by determination of MHC class I, II and CD 11c expression as well as the co-stimulatory molecules CD 83 and 86 by using flow cytometry. The phagocytic capacity of TLY-pulsed DCs was investigated through FITC-dextran uptake by using flow cytometry. The effect on the cytokines release including IL-12, IL-6 and IL-10 was elucidated by using ELISA. The migration capacity and T cell proliferation activity of pulsed DCs were measured. The relative gene expression levels of cytokines were determined by using qRT-PCR. The major constituents of P. amarus extract were qualitatively and quantitatively analyzed by using validated reversed-phase high performance liquid chromatography (HPLC) methods.

    RESULTS: P. amarus-generated TLY significantly up-regulated the expression levels of MHC class I, CD 11 c, CD 83 and 86 in pulsed DCs. The release of interleukin IL-12 and IL-6 was enhanced by TLY-DCs at a ratio of 1 DC: 3 tumor apoptotic bodies (APO), however, the release of IL-10 was suppressed. The migration ability as well as allogeneic T-cell proliferation activities of loaded DCs were significantly enhanced, but their phagocytic capacity was highly attenuated. The gene expression profiles for IL-12 and IL-6 of DCs showed increase in their mRNA gene expression in TLY pulsed DCs versus unloaded and LPS-treated only DCs.

    CONCLUSION: The effect of P. amarus-generated TLY on the immune effector mechanisms of DCs verified its potential to induce an in vitro anti-tumor immune response against the recognized tumor antigen.

    Matched MeSH terms: Dendritic Cells/immunology*
  3. Abdul Hafid SR, Chakravarthi S, Nesaretnam K, Radhakrishnan AK
    PLoS One, 2013;8(9):e74753.
    PMID: 24069344 DOI: 10.1371/journal.pone.0074753
    Tocotrienol-rich fraction (TRF) from palm oil is reported to possess anti-cancer and immune-enhancing effects. In this study, TRF supplementation was used as an adjuvant to enhance the anti-cancer effects of dendritic cells (DC)-based cancer vaccine in a syngeneic mouse model of breast cancer. Female BALB/c mice were inoculated with 4T1 cells in mammary pad to induce tumor. When the tumor was palpable, the mice in the experimental groups were injected subcutaneously with DC-pulsed with tumor lysate (TL) from 4T1 cells (DC+TL) once a week for three weeks and fed daily with 1 mg TRF or vehicle. Control mice received unpulsed DC and were fed with vehicle. The combined therapy of using DC+TL injections and TRF supplementation (DC+TL+TRF) inhibited (p<0.05) tumor growth and metastasis. Splenocytes from the DC+TL+TRF group cultured with mitomycin-C (MMC)-treated 4T1 cells produced higher (p<0.05) levels of IFN-γ and IL-12. The cytotoxic T-lymphocyte (CTL) assay also showed enhanced tumor-specific killing (p<0.05) by CD8(+) T-lymphocytes isolated from mice in the DC+TL+TRF group. This study shows that TRF has the potential to be used as an adjuvant to enhance effectiveness of DC-based vaccines.
    Matched MeSH terms: Dendritic Cells/immunology*
  4. Jambari NN, Liddell S, Martinez-Pomares L, Alcocer MJC
    PLoS One, 2021;16(4):e0249876.
    PMID: 33914740 DOI: 10.1371/journal.pone.0249876
    Ber e 1, a major Brazil nut allergen, has been successfully produced in the yeast Pichia pastoris expression system as homogenous recombinant Ber e 1 (rBer e 1) with similar physicochemical properties and identical immunoreactivity to its native counterpart, nBer e 1. However, O-linked glycans was detected on the P.pastoris-derived rBer e 1, which is not naturally present in nBer e 1, and may contribute to the allergic sensitisation. In this study, we addressed the glycosylation differences between P. pastoris-derived recombinant Ber e 1 and its native counterparts. We also determined whether this fungal glycosylation could affect the antigenicity and immunogenicity of the rBer e 1 by using dendritic cells (DC) as an immune cell model due to their role in modulating the immune response. We identified that the glycosylation occurs at Ser96, Ser101 and Ser110 on the large chain and Ser19 on the small polypeptide chain of rBer e 1 only. The glycosylation on rBer e 1 was shown to elicit varying degree of antigenicity by binding to different combination of human leukocyte antigens (HLA) at different frequencies compared to nBer e 1 when tested using human DC-T cell assay. However, both forms of Ber e 1 are weak immunogens based from their low response indexes (RI). Glycans present on rBer e 1 were shown to increase the efficiency of the protein recognition and internalization by murine bone marrow-derived dendritic cells (bmDC) via C-type lectin receptors, particularly the mannose receptor (MR), compared to the non-glycosylated nBer e 1 and SFA8, a weak allergenic 2S albumin protein from sunflower seed. Binding of glycosylated rBer e 1 to MR alone was found to not induce the production of IL-10 that modulates bmDC to polarise Th2 cell response by suppressing IL-12 production and DC maturation. Our findings suggest that the O-linked glycosylation by P. pastoris has a small but measurable effect on the in vitro antigenicity of the rBer e 1 compared to its non-glycosylated counterpart, nBer e 1, and thus may influence its applications in diagnostics and immunotherapy.
    Matched MeSH terms: Dendritic Cells/immunology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links