Displaying publications 21 - 27 of 27 in total

Abstract:
Sort:
  1. Aithal AP, Bairy LK, Seetharam RN, Rao MK
    J Cell Biochem, 2019 08;120(8):13026-13036.
    PMID: 30873677 DOI: 10.1002/jcb.28573
    BACKGROUND: To evaluate the antimutagenic potential of combination treatment of human bone marrow-derived mesenchymal stromal cells (BM-MSCs) and silymarin and its effect on hepatocyte growth factor levels in CCl4 induced hepatotoxicity in Wistar rats.

    METHODS: Hepatotoxicity was induced in adult female Wistar rats using carbon tetrachloride (CCl4 ). Thirty-six rats were randomly divided into six groups with six rats in each group: Group 1 (normal control group), Group 2 (received only CCl 4 ), Group 3 (CCl 4 +low dose BM-MSCs), Group 4 (CCl 4 +high dose BM-MSCs), Group 5 (CCl 4  + silymarin), Group 6 (CCl 4 +silymarin+high dose BM-MSCs). Thirty days after the treatment, blood samples were collected for hepatocyte growth factor estimation. The rats were then killed, bone marrow was extracted for chromosomal aberration assay. Liver tissue was processed for evaluating the DNA fragmentation assay, histopathology, and scanning electron microscopy study.

    RESULTS: Combination treatment of silymarin and high dose BM-MSCs significantly (P liver tissue samples. The combination treatment produced significant hepatoprotective effect which was supported by histopathology and scanning electron microscopy study.

    CONCLUSION: Results indicate that the treatment of BM-MSCs in combination with silymarin had a better hepatoprotective and antimutagenic effect and represents a novel strategy for the treatment of hepatotoxicity.

    Matched MeSH terms: Drug-Induced Liver Injury/etiology
  2. Sarin SK, Choudhury A, Sharma MK, Maiwall R, Al Mahtab M, Rahman S, et al.
    Hepatol Int, 2019 Jul;13(4):353-390.
    PMID: 31172417 DOI: 10.1007/s12072-019-09946-3
    The first consensus report of the working party of the Asian Pacific Association for the Study of the Liver (APASL) set up in 2004 on acute-on-chronic liver failure (ACLF) was published in 2009. With international groups volunteering to join, the "APASL ACLF Research Consortium (AARC)" was formed in 2012, which continued to collect prospective ACLF patient data. Based on the prospective data analysis of nearly 1400 patients, the AARC consensus was published in 2014. In the past nearly four-and-a-half years, the AARC database has been enriched to about 5200 cases by major hepatology centers across Asia. The data published during the interim period were carefully analyzed and areas of contention and new developments in the field of ACLF were prioritized in a systematic manner. The AARC database was also approached for answering some of the issues where published data were limited, such as liver failure grading, its impact on the 'Golden Therapeutic Window', extrahepatic organ dysfunction and failure, development of sepsis, distinctive features of acute decompensation from ACLF and pediatric ACLF and the issues were analyzed. These initiatives concluded in a two-day meeting in October 2018 at New Delhi with finalization of the new AARC consensus. Only those statements, which were based on evidence using the Grade System and were unanimously recommended, were accepted. Finalized statements were again circulated to all the experts and subsequently presented at the AARC investigators meeting at the AASLD in November 2018. The suggestions from the experts were used to revise and finalize the consensus. After detailed deliberations and data analysis, the original definition of ACLF was found to withstand the test of time and be able to identify a homogenous group of patients presenting with liver failure. New management options including the algorithms for the management of coagulation disorders, renal replacement therapy, sepsis, variceal bleed, antivirals and criteria for liver transplantation for ACLF patients were proposed. The final consensus statements along with the relevant background information and areas requiring future studies are presented here.
    Matched MeSH terms: Drug-Induced Liver Injury/etiology
  3. Dear JW, Ng ML, Bateman DN, Leroy Sivappiragasam P, Choi H, Khoo BBJ, et al.
    Clin Transl Sci, 2021 Jul;14(4):1476-1489.
    PMID: 33742775 DOI: 10.1111/cts.13009
    N-acetylcysteine (NAC) is an antidote to prevent acetaminophen (paracetamol-APAP)-induced acute liver injury (ALI). The 3-bag licensed 20.25 h standard regimen, and a 12 h modified regimen, are used to treat APAP overdose. This study evaluated the redox thiol response and APAP metabolites, in patients with a single APAP overdose treated with either the 20.25 h standard or 12 h modified regimen. We used liquid chromatography tandem mass spectrometry to quantify clinically important oxidative stress biomarkers and APAP metabolites in plasma samples from 45 patients who participated in a randomized controlled trial (SNAP trial). We investigated the time course response of plasma metabolites at predose, 12 h, and 20.25 h post-start of NAC infusion. The results showed that the 12 h modified regimen resulted in a significant elevation of plasma NAC and cysteine concentrations at 12 h post-infusion. We found no significant alteration in the metabolism of APAP, mitochondrial, amino acids, and other thiol biomarkers with the two regimens. We examined APAP and purine metabolism in overdose patients who developed ALI. We showed the major APAP-metabolites and xanthine were significantly higher in patients with ALI. These biomarkers correlated well with alanine aminotransferase activity at admission. Receiver operating characteristic analysis showed that at admission, plasma APAP-metabolites and xanthine concentrations were predictive for ALI. In conclusion, a significantly higher redox thiol response with the modified NAC regimen at 12 h postdose suggests this regimen may produce greater antioxidant efficacy. At baseline, plasma APAP and purine metabolites may be useful biomarkers for early prediction of APAP-induced ALI.
    Matched MeSH terms: Drug-Induced Liver Injury/etiology
  4. Haleagrahara N, Jackie T, Chakravarthi S, Rao M, Kulur A
    J Toxicol Sci, 2010 Oct;35(5):663-71.
    PMID: 20930461
    Lead is known to disrupt the biological systems by altering the molecular interactions, cell signaling, and cellular function. Exposure to even low levels of lead may have potential hazardous effects on brain, liver, kidneys and testes. The efficacy of Etlingera elatior (torch ginger) to protect hepatotoxicity induced by lead acetate was evaluated experimentally in male Sprague - Dawley rats. Rats were exposed to lead acetate in drinking water (500 ppm) for 21 days and the effects of concurrent treatment with extract of E. elatior on hepatic lipid hydroperoxides (LPO), protein carbonyl content (PCC), total antioxidants (TA), superoxide dismutase (SOD), glutathione peroxidase (GPX) and glutathione S- Transferase (GST) levels and histopathological changes in liver were evaluated. There was a significant decrease in TA and other antioxidant enzymes (p < 0.05) and increase in LPO and PCC (p < 0.05) with lead acetate ingestion. Concurrent treatment with E. elatior extract significantly reduced the LPO and PCC (p < 0.05) in serum and increased the antioxidant enzyme levels (p < 0.05) in the liver. Significant histopathological changes were seen in hepatic tissue with chronic lead ingestion. Treatment with E. elatior significantly reduced these lead-induced changes in hepatic architecture. E. elatior has also reduced the blood lead levels (BLL). Thus, there has been extensive biochemical and structural alterations indicative of liver toxicity with exposure to lead and E. elatior treatment significantly reduced these oxidative damage. Our results suggest that E. elatior has a powerful antioxidant effect against lead-induced hepatotoxicity.
    Matched MeSH terms: Drug-Induced Liver Injury/etiology
  5. Samuel AJ, Mohan S, Chellappan DK, Kalusalingam A, Ariamuthu S
    J Ethnopharmacol, 2012 May 7;141(1):396-402.
    PMID: 22421378 DOI: 10.1016/j.jep.2012.02.051
    The roots of Hibiscus vitifolius Linn. (Malvaceae) is used for the treatment of jaundice in the folklore system of medicine in India. This study is an attempt to evaluate the hepatoprotective activity of the roots of Hibiscus vitifolius against anti-tubercular drug induced hepatotoxicity.
    Matched MeSH terms: Drug-Induced Liver Injury/etiology
  6. Latif IK, Karim AJ, Zuki AB, Zamri-Saad M, Niu JP, Noordin MM
    Poult Sci, 2010 Jul;89(7):1379-88.
    PMID: 20548065 DOI: 10.3382/ps.2009-00622
    Aftermath in several air pollution episodes with high concentrations of polycyclic aromatic hydrocarbons did not significantly affect health and performance of broilers despite its renowned sensitivity to polycyclic aromatic hydrocarbons. The aim of the study was to elucidate the previous lack of response in birds exposed to such severe episodes of air pollution. Benzo[a]pyrene (BaP) was used to simulate the influence of air pollution on hematology, selected organ function, and oxidative stress in broilers. One-day-old chicks were assigned to 5 equal groups composed of a control group, tricaprylin group, and 3 groups treated with BaP (at 1.5 microg, 150 microg, or 15 mg/kg of BW). The BaP was intratracheally administered to 1-d-old chicks for 5 consecutive days. The hematology, liver and kidney function, P450 activity, and malondialdehyde level especially in the group receiving 15 mg of BaP/kg of BW demonstrated evidence of hemato- and hepatoxicity via BaP-induced oxidative stress. The deleterious effect of exposure to high concentration of BaP in broiler chickens was probably due to the anatomy of this species and the half-life of BaP. Although the effect of BaP may be transient or irreversible, pathogen challenges faced during the period of suppression may prove fatal.
    Matched MeSH terms: Drug-Induced Liver Injury/etiology*
  7. Lakshmanan H, Raman J, Pandian A, Kuppamuthu K, Nanjian R, Sabaratam V, et al.
    Regul Toxicol Pharmacol, 2016 Aug;79:25-34.
    PMID: 27177820 DOI: 10.1016/j.yrtph.2016.05.010
    Senecio candicans DC. (Asteraceae) is used as a remedy for gastric ulcer and stomach pain in the Nilgiris, district, Tamil Nadu. The present investigation was carried out to evaluate the sub-chronic toxicity of an aqueous extract of Senecio candicans (AESC) plant in Wistar albino rats. The study was conducted in consideration of the OECD 408 study design (Repeated Dose 90-Day Oral Toxicity Study in Rodents) and the extract was administered via gavage at doses of 250, 500 or 750 mg/kg body weight per day for 90-days. Hematological, biochemical parameters were determined on days 0, 30, 60 and 90 of administration. Animals were euthanized after 90 d treatment and its liver and kidney sections were taken for histological study. The results of sub-chronic study showed significant increase (P liver showed mild mononuclear infiltration in the portal trait, enlarged nucleus around the central vein and mild loss of hepatocyte architecture in rats treated with 750 mg/kg of AESC. Histological examination of kidney showed focal interstitial fibrosis, crowding of glomeruli and mild hydropic change with hypercellular glomeruli in rats treated with 750 mg/kg of AESC. However, no remarkable histoarchitectural change in hepatocytes and glomeruli were observed in rats treated with lower concentrations (250 and 500 mg/kg b.w.) of AESC compared to control group animals. The no-observed adverse effect level (NOAEL) of AESC in the present study was 500 mg/kg b.w. Signs of toxic effects are evident from the current study. Although AESC contains low concentrations of PA, findings from this study suggest that regular consumers of herbal remedies derived from this plant may develop kidney and liver toxicity. Further studies on the isolation and characterization of PAs are necessary to determine the safe dose level of the extract for therapeutic use in traditional medicine.
    Matched MeSH terms: Drug-Induced Liver Injury/etiology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links