Displaying publications 21 - 37 of 37 in total

Abstract:
Sort:
  1. Ambikabothy J, Ibrahim H, Ambu S, Chakravarthi S, Awang K, Vejayan J
    J Ethnopharmacol, 2011 Sep 1;137(1):257-62.
    PMID: 21640180 DOI: 10.1016/j.jep.2011.05.013
    Evaluations of the anti-snake venom efficacy of Mimosa pudica tannin isolate (MPT) obtained from root of the plant.
    Matched MeSH terms: Elapidae*
  2. Yap MK, Tan NH, Sim SM, Fung SY, Tan CH
    Basic Clin Pharmacol Toxicol, 2015 Oct;117(4):274-9.
    PMID: 25819552 DOI: 10.1111/bcpt.12398
    The treatment protocol of antivenom in snake envenomation remains largely empirical, partly due to the insufficient knowledge of the pharmacokinetics of snake venoms and the effects of antivenoms on the blood venom levels in victims. In this study, we investigated the effect of a polyvalent antivenom on the serum venom antigen levels of Naja sputatrix (Javan spitting cobra) venom in experimentally envenomed rabbits. Intravenous infusion of 4 ml of Neuro Polyvalent Snake Antivenom [NPAV, F(ab')2 ] at 1 hr after envenomation caused a sharp decline of the serum venom antigen levels, followed by transient resurgence an hour later. The venom antigen resurgence was unlikely to be due to the mismatch of pharmacokinetics between the F(ab')2 and venom antigens, as the terminal half-life and volume of distribution of the F(ab')2 in serum were comparable to that of venom antigens (p > 0.05). Infusion of an additional 2 ml of NPAV was able to prevent resurgence of the serum venom antigen level, resulting in a substantial decrease (67.1%) of the total amount of circulating venom antigens over time course of envenomation. Our results showed that the neutralization potency of NPAV determined by neutralization assay in mice may not be an adequate indicator of its capability to modulate venom kinetics in relation to its in vivo efficacy to neutralize venom toxicity. The findings also support the recommendation of giving high initial dose of NPAV in cobra envenomation, with repeated doses as clinically indicated in the presence of rebound antigenemia and symptom recurrence.
    Matched MeSH terms: Elapidae*
  3. Hawgood BJ
    Toxicon, 1998 Mar;36(3):431-46.
    PMID: 9637363
    Alistair Reid was an outstanding clinician, epidemiologist and scientist. At the Penang General Hospital, Malaya, his careful observation of sea snake poisoning revealed that sea snake venoms were myotoxic in man leading to generalized rhabdomyolysis, and were not neurotoxic as observed in animals. In 1961, Reid founded and became the first Honorary Director of the Penang Institute of Snake and Venom Research. Effective treatment of sea snake poisoning required specific antivenom which was produced at the Commonwealth Serum Laboratories in Melbourne from Enhydrina schistosa venom supplied by the Institute. From the low frequency of envenoming following bites, Reid concluded that snakes on the defensive when biting man seldom injected much venom. He provided clinical guidelines to assess the degree of envenoming, and the correct dose of specific antivenom to be used in the treatment of snake bite in Malaya. Reid demonstrated that the non-clotting blood of patients bitten by the pit viper, Calloselasma rhodostoma [Ancistrodon rhodostoma] was due to venom-induced defibrination. From his clinical experience of these patients, Reid suggested that a defibrinating derivative of C. rhodostoma venom might have a useful role in the treatment of deep vein thrombosis. This led to Arvin (ancrod) being used clinically from 1968. After leaving Malaya in 1964, Alistair Reid joined the staff of the Liverpool School of Tropical Medicine, as Senior Lecturer. Enzyme-linked immunosorbent assay (ELISA) for detecting and quantifying snake venom and venom-antibody was developed at the Liverpool Venom Research Unit: this proved useful in the diagnosis of snake bite, in epidemiological studies of envenoming patterns, and in screening of antivenom potency. In 1977, Dr H. Alistair Reid became Head of the WHO Collaborative Centre for the Control of Antivenoms based at Liverpool.
    Matched MeSH terms: Elapidae*
  4. Pruksaphon K, Tan KY, Tan CH, Simsiriwong P, Gutiérrez JM, Ratanabanangkoon K
    PLoS Negl Trop Dis, 2020 Aug;14(8):e0008581.
    PMID: 32857757 DOI: 10.1371/journal.pntd.0008581
    The aim of this study was to develop an in vitro assay for use in place of in vivo assays of snake venom lethality and antivenom neutralizing potency. A novel in vitro assay has been developed based on the binding of post-synaptically acting α-neurotoxins to nicotinic acetylcholine receptor (nAChR), and the ability of antivenoms to prevent this binding. The assay gave high correlation in previous studies with the in vivo murine lethality tests (Median Lethal Dose, LD50), and the neutralization of lethality assays (Median Effective Dose, ED50) by antisera against Naja kaouthia, Naja naja and Bungarus candidus venoms. Here we show that, for the neurotoxic venoms of 20 elapid snake species from eight genera and four continents, the in vitro median inhibitory concentrations (IC50s) for α-neurotoxin binding to purified nAChR correlated well with the in vivo LD50s of the venoms (R2 = 0.8526, p < 0.001). Furthermore, using this assay, the in vitro ED50s of a horse pan-specific antiserum against these venoms correlated significantly with the corresponding in vivo murine ED50s, with R2 = 0.6896 (p < 0.01). In the case of four elapid venoms devoid or having a very low concentration of α-neurotoxins, no inhibition of nAChR binding was observed. Within the philosophy of 3Rs (Replacement, Reduction and Refinement) in animal testing, the in vitro α-neurotoxin-nAChR binding assay can effectively substitute the mouse lethality test for toxicity and antivenom potency evaluation for neurotoxic venoms in which α-neurotoxins predominate. This will greatly reduce the number of mice used in toxicological research and antivenom production laboratories. The simpler, faster, cheaper and less variable in vitro assay should also expedite the development of pan-specific antivenoms against various medically important snakes in many parts of the world.
    Matched MeSH terms: Elapidae/immunology
  5. Leong PK, Tan NH, Fung SY, Sim SM
    Trans R Soc Trop Med Hyg, 2012 Dec;106(12):731-7.
    PMID: 23062608 DOI: 10.1016/j.trstmh.2012.07.009
    Cross neutralisation of venoms by antivenom raised against closely-related species has been well documented. The spectrum of paraspecific protection of antivenom raised against Asiatic Naja and Bungarus (krait) venoms, however, has not been fully investigated. In this study, we examined the cross neutralisation of venoms from common Southeast Asian cobras and kraits by two widely used polyvalent antivenoms produced in India: Vins Polyvalent Antivenom (VPAV) and Bharat Polyvalent Antivenom (BPAV), using both in vitro and in vivo mouse protection assays. BPAV was only moderately effective against venoms of N. kaouthia (Thailand) and N. sumatrana, and either very weakly effective or totally ineffective against the other cobra and krait venoms. VPAV, on the other hand, neutralised effectively all the Southeast Asian Naja venoms tested, as well as N. naja, B. candidus and Ophiophagus hannah venoms, but the potency ranges from effective to weakly effective. In an in vivo rodent model, VPAV also neutralised the lethality of venoms from Asiatic Naja and B. candidus. In anesthetised rat studies, both antivenoms effectively protected against the N. kaouthia venom-induced cardio-respiratory depressant and neuromuscular blocking effects. Overall, our results suggest that VPAV could be used as alternative antivenom for the treatment of elapid envenomation in Southeast Asian regions including Malaysia, Thailand and certain regions of Indonesia.
    Matched MeSH terms: Elapidae*
  6. Fung SY, Lee ML, Tan NH
    Toxicon, 2015 Mar;96:38-45.
    PMID: 25615711 DOI: 10.1016/j.toxicon.2015.01.012
    Snake venom LAAOs have been reported to exhibit a wide range of pharmacological activities, including cytotoxic, edema-inducing, platelet aggregation-inducing/platelet aggregation-inhibiting, bactericidal and antiviral activities. A heat-stable form of l-amino acid oxidase isolated from king cobra (Ophiophagus hannah) venom (OH-LAAO) has been shown to exhibit very potent cytotoxicity against human tumorigenic cells but not in their non-tumorigenic counterparts, and the cytotoxicity was due to the apoptosis-inducing effect of the enzyme. In this work, the molecular mechanism of cell death induced by OH-LAAO was investigated. The enzyme exerts its apoptosis-inducing effect presumably via both intrinsic and extrinsic pathways as suggested by the increase in caspase-8 and -9 activities. Oligonucleotide microarray analysis showed that the expression of a total of 178 genes was significantly altered as a result of oxidative stress induced by the hydrogen peroxide generated by the enzyme. Of the 178 genes, at least 27 genes are involved in apoptosis and cell death. These alterations of gene expression was presumably caused by the direct cytotoxic effect of H2O2 generated during the enzymatic reaction, as well as the non-specific oxidative modifications of signaling molecules that eventually lead to apoptosis and cell death. The very substantial up-regulation of cytochrome P450 genes may also contribute to the potent cytotoxic action of OH-LAAO by producing excessive reactive oxygen species (ROS). In conclusion, the potent apoptosis inducing activity of OH-LAAO was likely due to the direct cytotoxic effect of H2O2 generated during the enzymatic reaction, as well as the non-specific oxidation of signalling molecules.
    Matched MeSH terms: Elapidae/metabolism*
  7. Leong PK, Fung SY, Tan CH, Sim SM, Tan NH
    Acta Trop, 2015 Sep;149:86-93.
    PMID: 26026717 DOI: 10.1016/j.actatropica.2015.05.020
    The low potency of cobra antivenom has been an area of concern in immunotherapy for cobra envenomation. This study sought to investigate factors limiting the neutralizing potency of cobra antivenom, using a murine model. We examined the immunological reactivity and neutralizing potency of a Thai polyvalent antivenom against the principal toxins of Naja sumatrana (Equatorial spitting cobra) venom and two related Asiatic cobra venom α-neurotoxins. The antivenom possesses moderate neutralizing potency against phospholipases A2 (P, potency of 0.98mg/mL) and moderately weak neutralizing potency against long-chain α-neurotoxins (0.26-0.42mg/mL) but was only weakly effective in neutralizing the short-chain α-neurotoxins and cardiotoxins (0.05-0.08mg/mL). The poor neutralizing potency of the antivenom on the low molecular mass short-chain neurotoxins and cardiotoxins is presumably the main limiting factor of the efficacy of the cobra antivenom. Our results also showed that phospholipase A2, which exhibited the highest ELISA reactivity and avidity, was most effectively neutralized, whereas N. sumatrana short-chain neurotoxin, which exhibited the lowest ELISA reactivity and avidity, was least effectively neutralized by the antivenom. These observations suggest that low immunoreactivity (low ELISA reactivity and avidity) is one of the reasons for poor neutralization of the cobra venom low molecular mass toxins. Nevertheless, the overall results show that there is a lack of congruence between the immunological reactivity of the toxins toward antivenom and the effectiveness of toxin neutralization by the antivenom, indicating that there are other factors that also contribute to the weak neutralization capacity of the antivenom. Several suggestions have been put forward to overcome the low efficacy of the cobra antivenom. The use of a 'proper-mix' formulation of cobra venoms as immunogen, whereby the immunogen mixture used for hyperimmunization contains a mix of various types of α-neurotoxins and cardiotoxins in sufficient amount, may also help to improve the efficacy and broaden the neutralization spectrum of the antivenom.
    Matched MeSH terms: Elapidae
  8. Chong HP, Tan KY, Tan CH
    Front Mol Biosci, 2020;7:583587.
    PMID: 33263003 DOI: 10.3389/fmolb.2020.583587
    Venoms of cobras (Naja spp.) contain high abundances of cytotoxins, which contribute to tissue necrosis in cobra envenomation. The tissue-necrotizing activity of cobra cytotoxins, nevertheless, indicates anticancer potentials. This study set to explore the anticancer properties of the venoms and cytotoxins from Naja sumatrana (equatorial spitting cobra) and Naja kaouthia (monocled cobra), two highly venomous species in Southeast Asia. The cytotoxicity, selectivity, and cell death mechanisms of their venoms and cytotoxins (NS-CTX from N. sumatrana: NS-CTX; N. kaouthia: NK-CTX) were elucidated in human lung (A549), prostate (PC-3), and breast (MCF-7) cancer cell lines. Cytotoxins were purified through a sequential fractionation approach using cation-exchange chromatography, followed by C18 reverse-phase high-performance liquid chromatography (HPLC) to homogeneity validated with sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and identified by liquid chromatography-tandem mass spectrometry (LCMS/MS). The cobra venoms and their respective cytotoxins exhibited concentration-dependent growth inhibitory effects in all cell lines tested, with the cytotoxins being more potent compared to the corresponding whole venoms. NS-CTX and NK-CTX are, respectively, P-type and S-type isoforms of cytotoxin, based on the amino acid sequences as per LCMS/MS analysis. Both cytotoxins exhibited differential cytotoxic effects in the cell lines tested, with NS-CTX (P-type cytotoxin) being significantly more potent in inhibiting the growth of the cancer cells. Both cytotoxins demonstrated promising selectivity only for the A549 lung cancer cell line (selectivity index = 2.17 and 2.26, respectively) but not in prostate (PC-3) and breast (MCF-7) cancer cell lines (selectivity index < 1). Flow cytometry revealed that the A549 lung cancer cells treated with NS-CTX and NK-CTX underwent necrosis predominantly. Meanwhile, the cytotoxins induced mainly caspase-independent late apoptosis in the prostate (PC-3) and breast (MCF-7) cancer cells lines but lacked selectivity. The findings revealed the limitations and challenges that could be faced during the development of new cancer therapy from cobra cytotoxins, notwithstanding their potent anticancer effects. Further studies should aim to overcome these impediments to unleash the anticancer potentials of the cytotoxins.
    Matched MeSH terms: Elapidae
  9. Williams HF, Mellows BA, Mitchell R, Sfyri P, Layfield HJ, Salamah M, et al.
    PLoS Negl Trop Dis, 2019 01;13(1):e0007041.
    PMID: 30695027 DOI: 10.1371/journal.pntd.0007041
    Snakebite is a major neglected tropical health issue that affects over 5 million people worldwide resulting in around 1.8 million envenomations and 100,000 deaths each year. Snakebite envenomation also causes innumerable morbidities, specifically loss of limbs as a result of excessive tissue/muscle damage. Snake venom metalloproteases (SVMPs) are a predominant component of viper venoms, and are involved in the degradation of basement membrane proteins (particularly collagen) surrounding the tissues around the bite site. Although their collagenolytic properties have been established, the molecular mechanisms through which SVMPs induce permanent muscle damage are poorly understood. Here, we demonstrate the purification and characterisation of an SVMP from a viper (Crotalus atrox) venom. Mass spectrometry analysis confirmed that this protein is most likely to be a group III metalloprotease (showing high similarity to VAP2A) and has been referred to as CAMP (Crotalus atrox metalloprotease). CAMP displays both collagenolytic and fibrinogenolytic activities and inhibits CRP-XL-induced platelet aggregation. To determine its effects on muscle damage, CAMP was administered into the tibialis anterior muscle of mice and its actions were compared with cardiotoxin I (a three-finger toxin) from an elapid snake (Naja pallida) venom. Extensive immunohistochemistry analyses revealed that CAMP significantly damages skeletal muscles by attacking the collagen scaffold and other important basement membrane proteins, and prevents their regeneration through disrupting the functions of satellite cells. In contrast, cardiotoxin I destroys skeletal muscle by damaging the plasma membrane, but does not impact regeneration due to its inability to affect the extracellular matrix. Overall, this study provides novel insights into the mechanisms through which SVMPs induce permanent muscle damage.
    Matched MeSH terms: Elapidae
  10. Chetty N, Du A, Hodgson WC, Winkel K, Fry BG
    Toxicon, 2004 Aug;44(2):193-200.
    PMID: 15246769
    We examined the neurotoxicity of the following sea snake venoms: Enhydrina schistosa (geographical variants from Weipa and Malaysia), Lapemis curtus (Weipa and Malaysia), Laticauda colubrina, Aipysurus laevis, Aipysurus fuscus and Aipysurus foliosquamatus. Venom from a terrestrial snake, Notechis scutatus (tiger snake), was used as a reference. All venoms (1 and 3 microg/ml) abolished indirect twitches of the chick biventer cervicis muscle and significantly inhibited responses to ACh (1 mM) and CCh (20 microM), but not KCl (40 mM), indicating the presence of post-synaptic toxins. Prior administration (10 min) of CSL sea snake antivenom (1 unit/ml) attenuated the twitch blockade produced by N. scutatus venom and all sea snake venoms (1 microg/ml). Prior administration (10 min) of CSL tiger snake antivenom (1 unit/ml) attenuated the twitch blockade of all venoms except those produced by E. schistosa (Malaysia and Weipa) and A. foliosquamatus. Administration of CSL sea snake antivenom (1 unit/ml) at t90 (i.e. time at which 90% inhibition of initial twitch height occurred) reversed the inhibition of twitches (20-50%) produced by the sea snake venoms (1 microg/ml) but not by N. scutatus venom (1 microg/ml). CSL tiger snake antivenom (1 unit/ml) administered at t90 produced only minor reversal (i.e. 15-25%) of the twitch blockade caused by L. curtus (Weipa), A. foliosquamatus, L. colubrina and A. laevis venoms (1 microg/ml). Differences in the rate of reversal of the neurotoxicity produced by the two geographical variants of E. schistosa venom, after addition of CSL sea snake antivenom, indicate possible differences in venom components. This study shows that sea snake venoms contain potent post-synaptic activity that, despite the significant genetic distances between the lineages, can be neutralised with CSL sea snake antivenom. However, the effects of CSL tiger snake antivenom are more variable.
    Matched MeSH terms: Elapidae
  11. Tan KY, Tan CH, Sim SM, Fung SY, Tan NH
    Comp Biochem Physiol C Toxicol Pharmacol, 2016 Jul-Aug;185-186:77-86.
    PMID: 26972756 DOI: 10.1016/j.cbpc.2016.03.005
    The Southeast Asian monocled cobras (Naja kaouthia) exhibit geographical variations in their venom proteomes, especially on the composition of neurotoxins. This study compared the neuromuscular depressant activity of the venoms of N. kaouthia from Malaysia (NK-M), Thailand (NK-T) and Vietnam (NK-V), and the neutralization of neurotoxicity by a monospecific antivenom. On chick biventer cervicis nerve-muscle preparation, all venoms abolished the indirect twitches, with NK-T venom being the most potent (shortest t90, time to 90% twitch inhibition), followed by NK-V and NK-M. Acetylcholine and carbachol failed to reverse the blockade, indicating irreversible/pseudo-irreversible post-synaptic neuromuscular blockade. KCl restored the twitches variably (NK-M preparation being the least responsive), consistent with different degree of muscle damage. The findings support that NK-T venom has the most abundant curarimimetic alpha-neurotoxins, while NK-M venom contains more tissue-damaging cytotoxins. Pre-incubation of tissue with N. kaouthia monovalent antivenom (NKMAV) prevented venom-induced twitch depression, with the NK-T preparation needing the largest antivenom dose. NKMAV added after the onset of neuromuscular depression could only halt the inhibitory progression but failed to restore full contraction. The findings highlight the urgency of early antivenom administration to sequester as much circulating neurotoxins as possible, thereby hastening toxin elimination from the circulation. In envenomed mice, NKMAV administered upon the first neurological sign neutralized the neurotoxic effect, with the slowest full recovery noticed in the NK-T group. This is consistent with the high abundance of neurotoxins in the NK-T venom, implying that a larger amount or repeated dosing of NKMAV may be required in NK-T envenomation.
    Matched MeSH terms: Elapidae/metabolism*
  12. Kumarapppan C, Jaswanth A, Kumarasunderi K
    Asian Pac J Trop Med, 2011 Sep;4(9):743-7.
    PMID: 21967700 DOI: 10.1016/S1995-7645(11)60185-5
    OBJECTIVE: To validate traditional claims of usefulness of the Indian plants in management of poisonous snakebite and evaluate the antivenom properties displayed by the alcoholic extracts of Andrographis paniculata (A. paniculata), Crateva magna (C. magna), Gloriosa superba (G. superba) and Hydrocotyle javanica (H. javanica).

    METHODS: These plants were collected, identified and the extracts were prepared by using conventional Soxhlet ethanol extraction technique. The venom neutralization activity was accessed in mice (20-25g) and number of mortalities was observed against clinically important snake (Naja nigricollis) venom. Present study also deals with in vitro membrane stabilizing activity of these plants against hyposaline induced human red blood corpuscles (HRBC).

    RESULTS: Extracts of H. javanica and G. superba gave 80 % and 90 % protection to mice treated with minimum lethal dose of venom (LD(99)). These two plants showed significant neutralization effect against the venoms of Naja nigricollis venom. H. javanica and G. superba (25-100 mg/mL) produced significant changes of membrane stabilization of human red blood cells (HRBC) exposed to hyposaline-induced haemolysis.

    CONCLUSIONS: We conclude that probably due to presence of various phytochemicals plays an important role in the anti-venom potential of these Indian medicinal plants against Naja nigricollis venom. The above observations confirmed that A. paniculata, C. magna, G. superba and H. javanica plant extracts possess potent snake venom neutralizing capacity and could potentially be used as an adjuvants for antivenin therapy in case of snakebite envenomation, especially against the local effects of cobra venoms.

    Matched MeSH terms: Elapidae
  13. Tan NH, Fung SY, Sim SM, Marinello E, Guerranti R, Aguiyi JC
    J Ethnopharmacol, 2009 Jun 22;123(2):356-8.
    PMID: 19429384 DOI: 10.1016/j.jep.2009.03.025
    The seed, leaf and root of Mucuna pruriens have been used in traditional medicine for treatments of various diseases. In Nigeria, the seed is used as oral prophylactics for snakebite.
    Matched MeSH terms: Elapidae
  14. Wong KY, Tan KY, Tan NH, Tan CH
    Toxins (Basel), 2021 01 14;13(1).
    PMID: 33466660 DOI: 10.3390/toxins13010060
    The Senegalese cobra, Naja senegalensis, is a non-spitting cobra species newly erected from the Naja haje complex. Naja senegalensis causes neurotoxic envenomation in Western Africa but its venom properties remain underexplored. Applying a protein decomplexation proteomic approach, this study unveiled the unique complexity of the venom composition. Three-finger toxins constituted the major component, accounting for 75.91% of total venom proteins. Of these, cardiotoxin/cytotoxin (~53%) and alpha-neurotoxins (~23%) predominated in the venom proteome. Phospholipase A2, however, was not present in the venom, suggesting a unique snake venom phenotype found in this species. The venom, despite the absence of PLA2, is highly lethal with an intravenous LD50 of 0.39 µg/g in mice, consistent with the high abundance of alpha-neurotoxins (predominating long neurotoxins) in the venom. The hetero-specific VINS African Polyvalent Antivenom (VAPAV) was immunoreactive to the venom, implying conserved protein antigenicity in the venoms of N. senegalensis and N. haje. Furthermore, VAPAV was able to cross-neutralize the lethal effect of N. senegalensis venom but the potency was limited (0.59 mg venom completely neutralized per mL antivenom, or ~82 LD50 per ml of antivenom). The efficacy of antivenom should be further improved to optimize the treatment of cobra bite envenomation in Africa.
    Matched MeSH terms: Elapidae
  15. Fung SY, Tan NH, Liew SH, Sim SM, Aguiyi JC
    Trop Biomed, 2009 Apr;26(1):80-4.
    PMID: 19696731
    Seed of Mucuna pruriens (Velvet beans) has been prescribed by traditional medicine practitioners in Nigeria as a prophylactic oral antisnake remedy. In the present studies, we investigated the protective effects of M. pruriens seed extract (MPE) against histopathological changes induced by intravenous injection of Naja sputatrix (Malayan cobra) venom in rats pretreated with the seed extract. Examination by light microscope revealed that the venom induced histopathological changes in heart and blood vessels in liver, but no effect on brain, lung, kidney and spleen. The induced changes were prevented by pretreatment of the rats with MPE. Our results suggest that MPE pretreatment protects rat heart and liver blood vessels against cobra venom-induced damages.
    Matched MeSH terms: Elapidae
  16. Li Lee M, Chung I, Yee Fung S, Kanthimathi MS, Hong Tan N
    Basic Clin Pharmacol Toxicol, 2014 Apr;114(4):336-43.
    PMID: 24118879 DOI: 10.1111/bcpt.12155
    King cobra (Ophiophagus hannah) venom L-amino acid oxidase (LAAO), a heat-stable enzyme, is an extremely potent antiproliferative agent against cancer cells when compared with LAAO isolated from other snake venoms. King cobra venom LAAO was shown to exhibit very strong antiproliferative activities against MCF-7 (human breast adenocarcinoma) and A549 (human lung adenocarcinoma) cells, with an IC50 value of 0.04±0.00 and 0.05±0.00 μg/mL, respectively, after 72-hr treatment. In comparison, its cytotoxicity was about 3-4 times lower when tested against human non-tumourigenic breast (184B5) and lung (NL 20) cells, suggesting selective antitumour activity. Furthermore, its potency in MCF-7 and A549 cell lines was greater than the effects of doxorubicin, a clinically established cancer chemotherapeutic agent, which showed an IC50 value of 0.18±0.03 and 0.63±0.21 μg/mL, respectively, against the two cell lines. The selective cytotoxic action of the LAAO was confirmed by phycoerythrin (PE) annexin V/7-amino-actinomycin (AAD) apoptotic assay, in which a significant increase in apoptotic cells was observed in LAAO-treated tumour cells than in their non-tumourigenic counterparts. The ability of LAAO to induce apoptosis in tumour cells was further demonstrated using caspase-3/7 and DNA fragmentation assays. We also determined that this enzyme may target oxidative stress in its killing of tumour cells, as its cytotoxicity was significantly reduced in the presence of catalase (a H2O2 scavenger). In view of its heat stability and selective and potent cytotoxic action on cancer cells, king cobra venom LAAO can be potentially developed for treating solid tumours.
    Matched MeSH terms: Elapidae
  17. Armugam A, Earnest L, Chung MC, Gopalakrishnakone P, Tan CH, Tan NH, et al.
    Toxicon, 1997 Jan;35(1):27-37.
    PMID: 9028006
    cDNAs encoding three phospholipase A2 (PLA2) isoforms in Naja naja sputatrix were cloned and characterized. One of them encoded an acidic PLA2 (APLA) while the others encoded neutral PLA2 (NPLA-1 and NPLA-2). The specific characteristics of APLA and NPLA were attributed to mutations at nt139 and nt328 from G to C and G to A, respectively, resulting in amino acid substitutions from Asp20 and 83 in APLA to His20 and Asn83 in NPLA. Amino acid sequencing of purified protein also showed the presence of this Asp20 and His20 in APLA and NPLA, respectively. The cDNA encoding one of the PLA2 (NAJPLA-2A), when expressed in Escherichia coli, yielded a protein that exhibited PLA2 activity.
    Matched MeSH terms: Elapidae
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links