Displaying publications 21 - 27 of 27 in total

Abstract:
Sort:
  1. Lim LS, Tan SY, Tuzan AD, Kawamura G, Mustafa S, Rahmah S, et al.
    Fish Physiol Biochem, 2020 Aug;46(4):1621-1629.
    PMID: 32430644 DOI: 10.1007/s10695-020-00817-5
    Oxyeleotris marmorata is an ambush predator. It is known for slow growth rate and high market demand. Farming of O. marmorata still remains a challenge. In order to establish a proper feeding practice to stimulate growth, knowledge of its metabolic processes and cost should be examined. Therefore, this study was designed to investigate the diel osmorespiration rhythms of O. marmorata in response to feeding challenge by using an osmorespirometry assay. The results have shown that oxygen consumption rate of the fed fish was approximately 3 times higher than that of the unfed fish in early evening to support specific dynamic action. Digestion and ingestion processes were likely to be completed within 18-20 h in parallel with the ammonia excretion noticeable in early morning. Under resting metabolism, metabolic oxygen consumption was influenced by diel phase, but no effect was noted in ammonia excretion. As a nocturnal species, O. marmorata exhibited standard aerobic metabolic mode under dark phase followed by light phase, with high oxygen consumption rate found in either fed or unfed fish. It can be confirmed that both the diel phase and feeding have a significant interactive impact on oxygen consumption rate, whereas ammonia metabolism is impacted by feeding state. High metabolic rate of O. marmorata supports the nocturnal foraging activity in this fish. This finding suggested that feeding of O. marmorata should be performed during nighttime and water renewal should be conducted during daytime.
    Matched MeSH terms: Fishes/physiology*
  2. Smallhorn-West P, Gordon S, Stone K, Ceccarelli D, Malimali S, Halafihi T, et al.
    PLoS One, 2020;15(11):e0241146.
    PMID: 33201891 DOI: 10.1371/journal.pone.0241146
    Despite increasing threats to Tonga's coral reefs from stressors that are both local (e.g. overfishing and pollution) and global (e.g. climate change), there is yet to be a systematic assessment of the status of the country's coral reef ecosystem and reef fish fishery stocks. Here, we provide a national ecological assessment of Tonga's coral reefs and reef fish fishery using ecological survey data from 375 sites throughout Tonga's three main island groups (Ha'apai, Tongatapu and Vava'u), represented by seven key metrics of reef health and fish resource status. Boosted regression tree analysis was used to assess and describe the relative importance of 11 socio-environmental variables associated with these key metrics of reef condition. Mean live coral cover across Tonga was 18%, and showed a strong increase from north to south correlated with declining sea surface temperature, as well as with increasing distance from each provincial capital. Tongatapu, the southernmost island group, had 2.5 times greater coral cover than the northernmost group, Vava'u (24.9% and 10.4% respectively). Reef fish species richness and density were comparable throughout Tongatapu and the middle island group, Ha'apai (~35 species/transect and ~2500 fish/km2), but were significantly lower in Vava'u (~24 species/transect and ~1700 fish/km2). Spatial patterns in the reef fish assemblage were primarily influenced by habitat-associated variables (slope, structural complexity, and hard coral cover). The biomass of target reef fish was greatest in Ha'apai (~820 kg/ha) and lowest in Vava'u (~340 kg/ha), and was negatively associated with higher human influence and fishing activity. Overall mean reef fish biomass values suggest that Tonga's reef fish fishery can be classified as moderately to heavily exploited, with 64% of sites having less than 500 kg/ha. This study provides critical baseline ecological information for Tonga's coral reefs that will: (1) facilitate ongoing management and research; and (2) enable accurate reporting on conservation targets locally and internationally.
    Matched MeSH terms: Fishes/physiology*
  3. Dinh TD, Ambak MA, Hassan A, Phuong NT
    Pak J Biol Sci, 2007 Oct 01;10(19):3284-94.
    PMID: 19090143
    This study describe the reproductive biological characteristics and population parameters of the goby, Pseudapocryptes elongatus (Cuvier, 1816), in the coastal mud flat areas of the Mekong Delta, Vietnam. A total of 1058 specimens was collected from January 2004 to June 2005 and results showed that the breeding season occurred with two spawning peaks in July and October. Length at first maturity (L(m)) was 15.4 and 16.3 cm for females and males, respectively. The batch fecundity estimates ranged from 2,652 to 29,406 hydrated oocytes per ovary in the fish ranging from 12.8 to 22.4 cm TL. Length frequency data of the goby ranging from 9.0 to 24.0 cm TL were analyzed using the FiSAT II software. The von Bertalanffy growth parameters were determined as L8 = 25.9 cm, K = 0.66 year(-1) and t(o) = - 0.26 year(-1). The longevity (t(max)) of the goby was estimated to be 4.55 years. There were two recruitment peaks with very different magnitudes and the means of these two peaks were separated by an interval of 5 months. Length at first capture (L(c)) was 10.05 cm, the instantaneous fishing mortality rate (F = 1.38 year(-1)) and natural mortality rate (M = 1.46 year(-1)) accounted for 49 and 51% of the total mortality (Z = 2.84 year(-1)), respectively. Relative yield-per-recruit and biomass-per-recruit analyses gave E(max) = 0.65, E0.1 = 0.55 and E0.5 = 0.33. Results show that the fish stock is subjected to growth overexploitation.
    Matched MeSH terms: Fishes/physiology*
  4. Zakaria ZA, Kumar GH, Mat Jais AM, Sulaiman MR, Somchit MN
    Methods Find Exp Clin Pharmacol, 2008 Jun;30(5):355-62.
    PMID: 18806894 DOI: 10.1358/mf.2008.30.5.1186084
    The present study was carried out to elucidate the antinociceptive, antiinflammatory and antipyretic properties of the aqueous and lipid-based extracts of Channa striatus fillet in rats. The antinociceptive activity was assessed using the formalin test, and the antiinflammatory and antipyretic activities were assessed using the carrageenan-induced paw edema and brewer's yeast-induced pyrexia tests, respectively. Both types of extracts were prepared in concentrations of 10%, 50% and 100% by serial dilution in distilled water or dimethyl sulfoxide, respectively, and were administered subcutaneously 30 min prior to each test. Except for the 10% aqueous extract which exhibits activity only in the early phase, the extracts were found to exhibit significant (P < 0.05) activity in the early and late phases of the formalin test. Furthermore, the aqueous and lipid-based extracts were also found to show significant (P < 0.05) antiinflammatory activity, with the former showing a greater effect at the lowest concentration used. The lipidbased, but not the aqueous, extract was found to have significant (P < 0.05) activity in the pyrexia test. In conclusion, the present study demonstrated that C. striatus extracts possess antinociceptive, antiinflammatory and antipyretic activities.
    Matched MeSH terms: Fishes/physiology*
  5. Ogawa S, Parhar IS
    Gen Comp Endocrinol, 2013 Jan 15;181:169-74.
    PMID: 22967958 DOI: 10.1016/j.ygcen.2012.08.023
    Kisspeptin and its cognate receptor, GPR54 (kisspeptin receptor, Kiss-R) have recently been recognized potent regulators of reproduction in vertebrates. In non-mammalian vertebrates, kisspeptin-Kiss-R homologous and paralogous genes have been identified with their conserved functions in reproduction. Teleosts possess two paralogous genes encoding kisspeptin (kiss1 and kiss2) and Kiss-R (kissr1 and kissr2). Identification of the location and the distribution of the kisspeptin-Kiss-R systems as well as their connectivity with other neural system in the brain is important to elucidate the role of kisspeptin in neuroendocrine functions. This review focuses on the comparative aspects of neuroanatomical distribution of two kisspeptin-Kiss-R systems in the brain of teleosts and their potential roles in reproductive and non-reproductive functions. Finally, based on the association of kisspeptin types with tachykinin peptides, their potential neuromodulatory roles in the brain of teleost will be discussed. The existence of two kisspeptin systems suggests their independent functions in the brain of teleosts. Understanding of teleosts Kiss1 and Kiss2 systems will provide insight into the physiological and evolutional significance of multiple kisspeptin systems in the vertebrate brain.
    Matched MeSH terms: Fishes/physiology
  6. Polgar G, Malavasi S, Cipolato G, Georgalas V, Clack JA, Torricelli P
    PLoS One, 2011;6(6):e21434.
    PMID: 21738663 DOI: 10.1371/journal.pone.0021434
    Coupled behavioural observations and acoustical recordings of aggressive dyadic contests showed that the mudskipper Periophthalmodon septemradiatus communicates acoustically while out of water. An analysis of intraspecific variability showed that specific acoustic components may act as tags for individual recognition, further supporting the sounds' communicative value. A correlative analysis amongst acoustical properties and video-acoustical recordings in slow-motion supported first hypotheses on the emission mechanism. Acoustic transmission through the wet exposed substrate was also discussed. These observations were used to support an "exaptation hypothesis", i.e. the maintenance of key adaptations during the first stages of water-to-land vertebrate eco-evolutionary transitions (based on eco-evolutionary and palaeontological considerations), through a comparative bioacoustic analysis of aquatic and semiterrestrial gobiid taxa. In fact, a remarkable similarity was found between mudskipper vocalisations and those emitted by gobioids and other soniferous benthonic fishes.
    Matched MeSH terms: Fishes/physiology*
  7. Teo BG, Dhillon SK, Lim LH
    PLoS One, 2013;8(10):e77650.
    PMID: 24204903 DOI: 10.1371/journal.pone.0077650
    In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation.
    Matched MeSH terms: Fishes/physiology*
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links