Displaying publications 21 - 40 of 75 in total

Abstract:
Sort:
  1. Soo YN, Tan CP, Tan PY, Khalid N, Tan TB
    J Sci Food Agric, 2021 Apr;101(6):2455-2462.
    PMID: 33034060 DOI: 10.1002/jsfa.10871
    BACKGROUND: The popularity of coffee, the second most consumed beverage in the world, contributes to the high demand for liquid non-dairy creamer (LNDC). In this study, palm olein emulsions (as LNDCs) were investigated as alternatives to the more common soybean oil-based LNDCs. LNDCs were prepared via different homogenization pressures (100-300 bar) using different types of oil (palm olein and soybean oil) and concentrations of DATEM emulsifier (5-20 g kg-1 ).

    RESULTS: Increases in homogenization pressure and emulsifier concentration were observed to have significant (P  0.05) differences between the prepared and commercial LNDCs in terms of their color, appearance, and overall acceptability.

    CONCLUSION: Shelf-stable LNDCs with qualities comparable to commercial LNDC were successfully fabricated. Valuable insights into the effects of homogenization pressure, oil type, and emulsifier concentration, as well as functionality and consumer acceptance of the LNDCs when added into black coffee, were obtained. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Food Handling/methods*
  2. Ling JWA, Chang LS, Babji AS, Lim SJ
    J Sci Food Agric, 2020 Oct;100(13):4714-4722.
    PMID: 32468613 DOI: 10.1002/jsfa.10530
    BACKGROUND: Processing of edible bird's nest (EBN) requires extensive washing to remove impurities and produces huge amounts of EBN co-products, which contain mainly feathers with glycoproteins attached, which are usually discarded. This study was conducted to recover the valuable EBN glycoproteins from the waste material. Enzymatic hydrolysis was applied to recover EBN glycopeptides from EBN co-products (EBNcoP ) and processed cleaned EBN (EBNclean ) was used as control, which were then freeze-dried into EBN hydrolysates (EBNhcoP and EBNhclean , respectively).

    RESULTS: The recovery yield for EBNhclean and EBNhcoP were 89.09 ± 0.01% and 47.64 ± 0.26%, respectively, indicating nearly 50% of glycopeptide can be recovered from the waste material. Meanwhile, N-acetylneuraminic acid, a major acid sugar in EBN glycoproteins, of EBNhcoP increased by 229% from 58.6 ± 3.9 to 192.9 ± 3.1 g kg-1 , indicating the enzymatic hydrolysis removed impurities and thus enhanced the N-acetylneuraminic acid content. Total soluble protein was more than 330 g kg-1 for all the samples. Colour parameter showed that hydrolysate samples have greater L* (lightness) values. Chroma result indicates the intensity of all the samples were low (

    Matched MeSH terms: Food Handling/methods*
  3. Ojukwu M, Ofoedu C, Seow EK, Easa AM
    J Sci Food Agric, 2021 Jul;101(9):3732-3741.
    PMID: 33301191 DOI: 10.1002/jsfa.11004
    BACKGROUND: Rice flour does not contain gluten and lacks cohesion and extensibility, which is responsible for the poor texture of rice noodles. Different technologies have been used to mitigate this challenge, including hydrothermal treatments of rice flour, direct addition of protein in noodles, use of additives such as hydrocolloids and alginates, and microbial transglutaminase (MTG). Recently, the inclusion of soy protein isolate (SPI), MTG, and glucono-δ-lactone (GDL) in the rice noodles system yielded rice noodles with improved texture and more compact microstructure, hence the need to optimize the addition of SPI, MTG, and GDL to make quality rice noodles.

    RESULTS: Numerical optimization showed that rice noodles prepared with SPI, 68.32 (g kg-1 of rice flour), MTG, 5.06 (g kg-1 of rice flour) and GDL, 5.0 (g kg-1 of rice flour) gave the best response variables; hardness (53.19 N), springiness (0.76), chewiness (20.28 J), tensile strength (60.35 kPa), and cooking time (5.15 min). The pH, sensory, and microstructure results showed that the optimized rice noodles had a more compact microstructure with fewer hollows, optimum pH for MTG action, and overall sensory panelists also showed the highest preference for the optimized formulation, compared to other samples selected from the numerical optimization and desirability tests.

    CONCLUSION: Optimization of the levels of SPI, MTG, and GDL yielded quality noodles with improved textural, mechanical, sensory, and microstructural properties. This was partly due to the favourable pH value of the optimized noodles that provided the most suitable conditions for MTG crosslinking and balanced electrostatic interaction of proteins. © 2020 Society of Chemical Industry.

    Matched MeSH terms: Food Handling/methods*
  4. Mat Yusoff M, Niranjan K, Mason OA, Gordon MH
    J Sci Food Agric, 2020 Mar 15;100(4):1588-1597.
    PMID: 31773733 DOI: 10.1002/jsfa.10167
    BACKGROUND: Moringa oleifera (MO) kernel oil is categorized as a high-oleic oil that resembles olive oil. However, unlike olive trees, MO trees are largely present in most subtropical and tropical countries. In these countries, therefore, the benefits of oleic acid can be obtained at a cheaper price through the consumption of MO kernel oil. This study reports on the effect of different extraction methods on oxidative properties of MO kernel oil during storage for 140 days at 13, 25, and 37 °C.

    RESULTS: All aqueous enzymatic extraction (AEE)-based methods generally resulted in oil with better oxidative properties and higher tocopherol retention than the use of solvent. Prior to AEE, boiling pre-treatment deactivated the hydrolytic enzymes and preserved the oil's quality. In contrast, high-pressure processing (HPP) pre-treatment accelerated hydrolytic reaction and resulted in an increase in free fatty acids after 140 days at all temperatures. No significant changes were detected in the oils' iodine values and fatty acid composition. The tocopherol content decreased significantly at both 13 and 25 °C after 60 days in the oil from SE method, and after 120 days in oils from AEE-based methods.

    CONCLUSION: These findings are significant in highlighting the extraction methods resulting in crude MO kernel oil with greatest oxidative stability in the storage conditions tested. Subsequently, the suitable storage condition of the oil prior to refining can be determined. Further studies are recommended in determining the suitable refining processes and parameters for the MO kernel oil prior to application in variety food products. © 2019 Society of Chemical Industry.

    Matched MeSH terms: Food Handling/methods*
  5. Ramli NAS, Mohd Noor MA, Musa H, Ghazali R
    J Sci Food Agric, 2018 Jul;98(9):3351-3362.
    PMID: 29250790 DOI: 10.1002/jsfa.8839
    BACKGROUND: Palm oil is one of the major oils and fats produced and traded worldwide. The value of palm oil products is mainly influenced by their quality. According to ISO 17025:2005, accredited laboratories require a quality control procedure with respect to monitoring the validity of tests for determination of quality parameters. This includes the regular use of internal quality control using secondary reference materials. Unfortunately, palm oil reference materials are not currently available. To establish internal quality control samples, the stability of quality parameters needs to be evaluated.

    RESULTS: In the present study, the stability of quality parameters for palm oil products was examined over 10 months at low temperature storage (6 ± 2 °C). The palm oil products tested included crude palm oil (CPO); refined, bleached and deodorized (RBD) palm oil (RBDPO); RBD palm olein (RBDPOo); and RBD palm stearin (RBDPS). The quality parameters of the oils [i.e. moisture content, free fatty acid content (FFA), iodine value (IV), fatty acids composition (FAC) and slip melting point (SMP)] were determined prior to and throughout the storage period. The moisture, FFA, IV, FAC and SMP for palm oil products changed significantly (P  0.05). The stability study indicated that the quality of the palm oil products was stable within the specified limits throughout the storage period at low temperature.

    CONCLUSION: The storage conditions preserved the quality of palm oil products throughout the storage period. These findings qualify the use of the palm oil products CPO, RBDPO, RBDPOo and RBDPS as control samples in the validation of test results. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Food Handling/methods
  6. Ramli MR, Tarmizi AHA, Hammid ANA, Razak RAA, Kuntom A, Lin SW, et al.
    J Oleo Sci, 2020 Aug 06;69(8):815-824.
    PMID: 32641608 DOI: 10.5650/jos.ess20021
    Approximately 900 tonne of crude palm oil (CPO) underwent washing using 5 to 10% hot water (90 to 95°C) at a palm oil mill. The aim of the CPO washing was to eliminate and/or reduce total chlorine content present in the conventional CPO, as it is known as the main precursor for the formation of 3-monochloropropane-1, 2-diol esters (3-MCPDE). By a simple hot water washing, more than 85% of the total chlorine was removed. However, washing did not have significant (p > 0.05) effect on other oil quality parameters such as the deterioration of bleachability index (DOBI), free fatty acid (FFA) content and diacylglycerol (DAG) content of the oil. The latter has been established as the main precursor for glycidyl esters (GE) formation. The treated CPO was then transported using tankers and further refined at a commercial refinery. Refining of washed CPO resulted in significantly (p < 0.05) lower formation of 3-MCPDE, but GE content remained slightly high. Post-treatment of refined oil significantly reduced the GE content (p < 0.05) to an acceptable level whilst almost maintaining the low 3-MCPDE level. The study has proven that water washing of CPO prior to refining and subsequent post-refining is so far the most effective way to produce good quality refined oil with considerably low 3-MCPDE and GE contents. Dry fractionation of refined palm oil showed these contaminants partitioned more into the liquid olein fraction compared to the stearin fraction.
    Matched MeSH terms: Food Handling/methods*
  7. Lau HLN, Tee YS, Chan MK, Teh SS
    J Oleo Sci, 2022;71(2):177-185.
    PMID: 35110462 DOI: 10.5650/jos.ess21256
    Phosphoric acid is used in the refining of palm oil for the removal of phosphatides. The high concentration of phosphorus in solvent extracted palm-pressed mesocarp fiber oil hinders palm oil mills to recover this phytonutrients-rich residual oil in pressed fiber which typically contains 0.1 to 0.2% of total oil yield. This study aimed to refine the palm-pressed mesocarp fiber oil and determine the optimum dosage of phosphoric acid for acid-degumming of palm-pressed mesocarp fiber oil while retaining its phytonutrients. The refining process was carried out with combination of wet degumming, acid degumming, neutralisation, bleaching and deodorization. The optimum dose of phosphoric acid was identified as 0.05 wt.% by incorporating the wet degumming process. The refined palm-pressed mesocarp fiber oil showed a reduction in phosphorus content by 97% (from 901 ppm to 20 ppm) and 97% free fatty acid content removal (from 6.36% to 0.17%), while the Deterioration of Bleachability Index increased from 1.76 to 2.48, which showed an increment of 41%. The refined oil retained the key phytonutrients such as carotenoids (1,150 ppm) and vitamin E (1,540 ppm) that can be further developed into high-value products. The oil meets the quality specification of refined, bleached, and deodorized palm oil while preserving the heat-sensitive phytonutrients, which in turn provides a new resource of nutritious oil.
    Matched MeSH terms: Food Handling/methods*
  8. Sim BI, Muhamad H, Lai OM, Abas F, Yeoh CB, Nehdi IA, et al.
    J Oleo Sci, 2018 Apr 01;67(4):397-406.
    PMID: 29526878 DOI: 10.5650/jos.ess17210
    This paper examines the interactions of degumming and bleaching processes as well as their influences on the formation of 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters in refined, bleached and deodorized palm oil by using D-optimal design. Water degumming effectively reduced the 3-MCPDE content up to 50%. Acid activated bleaching earth had a greater effect on 3-MCPDE reduction compared to natural bleaching earth and acid activated bleaching earth with neutral pH, indicating that performance and adsorption capacities of bleaching earth are the predominant factors in the removal of esters, rather than its acidity profile. The combination of high dosage phosphoric acid during degumming with the use of acid activated bleaching earth eliminated almost all glycidyl esters during refining. Besides, the effects of crude palm oil quality was assessed and it was found that the quality of crude palm oil determines the level of formation of 3-MCPDE and glycidyl esters in palm oil during the high temperature deodorization step of physical refining process. Poor quality crude palm oil has strong impact towards 3-MCPDE and glycidyl esters formation due to the intrinsic components present within. The findings are useful to palm oil refining industry in choosing raw materials as an input during the refining process.
    Matched MeSH terms: Food Handling/methods*
  9. Paydar M, Wong YL, Wong WF, Hamdi OA, Kadir NA, Looi CY
    J Food Sci, 2013 Dec;78(12):T1940-7.
    PMID: 24279333 DOI: 10.1111/1750-3841.12313
    Edible bird nests (EBNs) are important ethnomedicinal commodity in the Chinese community. Recently, But and others showed that the white EBNs could turn red by vapors from sodium nitrite (NaNO2) in acidic condition or from bird soil, but this color-changing agent remained elusive. The aim of this study was to determine the prevalence of nitrite and nitrate contents and its affects on EBN's color. EBNs were collected from swiftlet houses or caves in Southeast Asia. White EBNs were exposed to vapor from NaNO2 in 2% HCl, or bird soil. The levels of nitrite (NO2-) and nitrate (NO3-) in EBNs were determined through ion chromatography analysis. Vapors from NaNO2 in 2% HCl or bird soil stained white bird nests to brown/red colors, which correlated with increase nitrite and nitrate levels. Moreover, naturally formed cave-EBNs (darker in color) also contained higher nitrite and nitrate levels compared to white house-EBNs, suggesting a relationship between nitrite and nitrate with EBN's color. Of note, we detected no presence of hemoglobin in red "blood" nest. Using infrared spectra analysis, we demonstrated that red/brown cave-EBNs contained higher intensities of C-N and N-O bonds compared to white house-EBNs. Together, our study suggested that the color of EBNs was associated with the prevalence of the nitrite and nitrate contents.
    Matched MeSH terms: Food Handling/methods
  10. Karthivashan G, Tangestani Fard M, Arulselvan P, Abas F, Fakurazi S
    J Food Sci, 2013 Sep;78(9):C1368-75.
    PMID: 24024688 DOI: 10.1111/1750-3841.12233
    Free radicals trigger chain reaction and inflict damage to the cells and its components, which in turn ultimately interrupts their biological activities. To prevent free radical damage, together with an endogenous antioxidant system, an exogenous supply of antioxidant components to the body in the form of functional food or nutritional diet helps undeniably. Research conducted by the Natl. Inst. of Health claimed that Moringa oleifera Lam possess the highest antioxidant content among various natural food sources based on an oxygen radical absorbent capacity assay. In this study, a 90% (ethanol:distilled water--90:10) gradient solvent was identified as one of the best gradient solvents for the effectual extraction of bioactive components from M. oleifera leaves. This finding was confirmed by various antioxidant assays, including radical scavenging activity (that is, 1, 1-diphenyl-2-picrylhydrazyl, H(2)O(2), and NO radical scavenging assay) and total antioxidant capacity (that is, ferric reducing antioxidant power and molybdenum assay). High-performance liquid chromatography (HPLC) fingerprints of the 90% gradient extract visually showed few specific peaks, which on further analysis, using HPLC-DAD-ESI-MS, were identified as flavonoids and their derivatives. Despite commonly reported flavonoids, that is, kaempferol and quercetin, we report here for the 1st time the presence of multiflorin-B and apigenin in M. oleifera leaves. These findings might help researchers to further scrutinize this high activity exhibiting gradient extract and its bio-active candidates for fruitful clinical/translational investigations.
    Matched MeSH terms: Food Handling/methods
  11. Lee YY, Tang TK, Lai OM
    J Food Sci, 2012 Aug;77(8):R137-44.
    PMID: 22748075 DOI: 10.1111/j.1750-3841.2012.02793.x
    Medium- and long-chain triacylglycerol (MLCT) is a modified lipid containing medium- chain (C6-C12) and long-chain fatty acids (C14-C24) in the same triacylglycerol (TAG) molecule. It can be produced either through enzymatic (with 1,3 specific or nonspecific enzyme) or chemical methods. The specialty of this structured lipid is that it is metabolized differently compared to conventional fats and oils, which can lead to a reduction of fat accumulation in the body. Therefore, it can be used for obesity management. It also contains nutritional properties that can be used to treat metabolic problems. This review will discuss on the health benefits of MLCT, its production methods especially via enzymatic processes and its applications in food industries.
    Matched MeSH terms: Food Handling/methods
  12. Nurkhoeriyati T, Huda N, Ahmad R
    J Food Sci, 2011 Jan-Feb;76(1):S48-55.
    PMID: 21535715 DOI: 10.1111/j.1750-3841.2010.01963.x
    The gelation properties of spent duck meat surimi-like material produced using acid solubilization (ACS) or alkaline solubilization (ALS) were studied and compared with conventionally processed (CON) surimi-like material. The ACS process yielded the highest protein recovery (P < 0.05). The ALS process generated the highest lipid reduction, and the CON process yielded the lowest reduction (P < 0.05). Surimi-like material produced by the CON process had the highest gel strength, salt extractable protein (SEP), and water holding capacity (WHC), followed by materials produced via the ALS and ACS processes and untreated duck meat (P < 0.05). The material produced by the CON process also had the highest cohesiveness, hardness, and gumminess values and the lowest springiness value. Material produced by the ACS and ALS processes had higher whiteness values than untreated duck meat gels and gels produced by the CON method (P < 0.05). Surimi-like material produced using the ACS and CON processes had significantly higher myoglobin removal (P < 0.05) than that produced by the ALS method and untreated duck meat. Among all surimi-like materials, the highest Ca(2+)-ATPase activity was found in conventionally produced gels (P < 0.05). This suggests that protein oxidation was induced by acid-alkaline solubilization. The gels produced by ALS had a significantly lower (P < 0.05) total SH content than the other samples. This result showed that the acid-alkaline solubilization clearly improved gelation and color properties of spent duck and possibly applied for other high fat raw material.
    Matched MeSH terms: Food Handling/methods*
  13. Lioe HN, Selamat J, Yasuda M
    J Food Sci, 2010 Apr;75(3):R71-6.
    PMID: 20492309 DOI: 10.1111/j.1750-3841.2010.01529.x
    Soy sauce taste has become a focus of umami taste research. Umami taste is a 5th basic taste, which is associated to a palatable and pleasurable taste of food. Soy sauce has been used as an umami seasoning since the ancient time in Asia. The complex fermentation process occurred to soy beans, as the raw material in the soy sauce production, gives a distinct delicious taste. The recent investigation on Japanese and Indonesian soy sauces revealed that this taste is primarily due to umami components which have molecular weights lower than 500 Da. Free amino acids are the low molecular compounds that have an important role to the taste, in the presence of sodium salt. The intense umami taste found in the soy sauces may also be a result from the interaction between umami components and other tastants. Small peptides are also present, but have very low, almost undetected umami taste intensities investigated in their fractions.
    Matched MeSH terms: Food Handling/methods
  14. Ojukwu M, Tan JS, Easa AM
    J Food Sci, 2020 Sep;85(9):2720-2727.
    PMID: 32776580 DOI: 10.1111/1750-3841.15357
    A process for enhancing textural and cooking properties of fresh rice flour-soy protein isolate noodles (RNS) to match those of yellow alkaline noodles (YAN) was developed by incorporating microbial transglutaminase (RNS-MTG), glucono-δ-lactone (RNS-GDL), and both MTG and GDL into the RNS noodles (RNS-COM). The formation of γ-glutamyl-lysine bonds in RNS-COM and RNS-MTG was shown by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Scanning electron microscope showed that compared to others, the structure of RNS-COM was denser, smoother with extensive apparent interconnectivity of aggregates. The optimum cooking time was in the order: YAN > RNS-COM > RNS-MTG > RNS-GDL > RN (rice flour noodles); tensile strength was in the order: YAN > RNS-COM > RNS-MTG > RNS-GDL > RN; and elasticity were in the order: YAN > RNS-COM > RNS-MTG, RNS-GDL > RN. Overall, RNS-COM showed similar textural and structural breakdown parameters as compared to those of YAN. Changes in microstructures and improvement of RNS-COM in certain properties were likely due to enhanced crosslinking of proteins attributed to MTG- and GDL-induced cold gelation of proteins at reduced pH value. It is possible to use the combination of MTG and GDL to improve textural and mechanical properties of RNS comparable to those of YAN. PRACTICAL APPLICATION: Combined MTG and GDL yield rice flour noodles with improved textural properties. The restructured rice flour noodles have the potential to replace yellow alkaline noodles.
    Matched MeSH terms: Food Handling/methods*
  15. Wan-Mohtar WAAQI, Halim-Lim SA, Kamarudin NZ, Rukayadi Y, Abd Rahim MH, Jamaludin AA, et al.
    J Food Sci, 2020 Oct;85(10):3124-3133.
    PMID: 32860235 DOI: 10.1111/1750-3841.15402
    In a commercial oyster mushroom farm, from 300 g of the total harvest, only the cap and stem of the fruiting body parts are harvested (200 g) while the unused lower section called fruiting-body-base (FBB) is discarded (50 g). A new antioxidative FBB flour (FBBF) conversion to mixed-ratio chicken patty was recently developed which converts 16.67% of FBB into an edible flour. At the initial stage, pretreatments of FBBF were optimized at particle size (106 µm) and citric acid concentration (0.5 g/100 mL) to improve flour antioxidant responses. Such pretreatments boosted total phenolic content (2.31 ± 0.53 mg GAE/g) and DPPH (51.53 ± 1.51%) of pretreated FBBF. Mixed-ratio chicken patty containing FBBF (10%, 20%, 30%) significantly (P food products. PRACTICAL APPLICATION: This study shows that unused harvested mushroom waste from a local farm can be used to make an antioxidative chicken patty that is acceptable to consumer panellists. The converted mushroom waste into flour suggests that smaller particles and citric acid pretreatment can increase its nutritional value. This information can be used for waste conversion into new product development from any type of mushroom farm.
    Matched MeSH terms: Food Handling/methods*
  16. Md Zain SN, Bennett R, Flint S
    J Food Sci, 2017 Mar;82(3):751-756.
    PMID: 28135405 DOI: 10.1111/1750-3841.13633
    The objective of this study was to determine the possible source of predominant Bacillus licheniformis contamination in a whey protein concentrate (WPC) 80 manufacturing plant. Traditionally, microbial contaminants of WPC were believed to grow on the membrane surfaces of the ultrafiltration plant as this represents the largest surface area in the plant. Changes from hot to cold ultrafiltration have reduced the growth potential for bacteria on the membrane surfaces. Our recent studies of WPCs have shown the predominant microflora B. licheniformis would not grow in the membrane plant because of the low temperature (10 °C) and must be growing elsewhere. Contamination of dairy products is mostly due to bacteria being released from biofilm in the processing plant rather from the farm itself. Three different reconstituted WPC media at 1%, 5%, and 20% were used for biofilm growth and our results showed that B. licheniformis formed the best biofilm at 1% (low solids). Further investigations were done using 3 different media; tryptic soy broth, 1% reconstituted WPC80, and 1% reconstituted WPC80 enriched with lactose and minerals to examine biofilm growth of B. licheniformis on stainless steel. Thirty-three B. licheniformis isolates varied in their ability to form biofilm on stainless steel with stronger biofilm in the presence of minerals. The source of biofilms of thermo-resistant bacteria such as B. licheniformis is believed to be before the ultrafiltration zone represented by the 1% WPC with lactose and minerals where the whey protein concentration is about 0.6%.
    Matched MeSH terms: Food Handling/methods*
  17. Chai LC, Lee HY, Ghazali FM, Abu Bakar F, Malakar PK, Nishibuchi M, et al.
    J Food Prot, 2008 Dec;71(12):2448-52.
    PMID: 19244897
    Campylobacter jejuni was found to occur at high prevalence in the raw salad vegetables examined. Previous reports describe cross-contamination involving meat; here we investigated the occurrence of cross-contamination and decontamination events in the domestic kitchen via C. jejuni-contaminated vegetables during salad preparation. This is the first report concerning quantitative cross-contamination and decontamination involving naturally contaminated produce. The study was designed to simulate the real preparation of salad in a household kitchen, starting with washing the vegetables in tap water, then cutting the vegetables on a cutting board, followed by slicing cucumber and blanching (heating in hot water) the vegetables in 85 degrees C water. Vegetables naturally contaminated with C. jejuni were used throughout the simulation to attain realistic quantitative data. The mean of the percent transfer rates for C. jejuni from vegetable to wash water was 30.1 to 38.2%; from wash water to cucumber, it was 26.3 to 47.2%; from vegetables to cutting board, it was 1.6 to 10.3%; and from cutting board to cucumber, it was 22.6 to 73.3%. The data suggest the wash water and plastic cutting board as potential risk factors in C. jejuni transmission to consumers. Washing of the vegetables with tap water caused a 0.4-log reduction of C. jejuni attached to the vegetables (most probable number/gram), while rapid blanching reduced the number of C. jejuni organisms to an undetectable level.
    Matched MeSH terms: Food Handling/methods*
  18. Leong YK, Xui OC, Chia OK
    J Food Prot, 2008 May;71(5):1035-7.
    PMID: 18522042
    Survival of rotavirus in fresh fruit juices of papaya (Caraca papaya L.), honeydew melon (Cucumis melo L.), and pineapple (Ananas comosus [L.] Merr.) was studied. Clarified juices were prepared from pulps of ripe fruits and sterilized by ultrafiltration. One milliliter of juice from each fruit was inoculated with 20 microl of 1 x 10(6) PFU of SA11 rotavirus and sampled immediately (0-h exposure) and 1 and 3 h later at 28 degrees C. Mean viral titers in juices of papaya (pH 5.1) and honeydew melon (pH 6.3) at 1 and 3 h were not significantly different from titers at 0-h exposure. Mean viral titers in juices from pineapples with ripening color indices of 3 (pH 3.6) and 6 (pH 3.7) at 1-h exposure (color index 3: 4.0 +/- 1.7 x 10(4); color index 6: 2.3 +/- 0.3 x 10(5)) and 3-h exposure (color index 3: 1.1 +/- 0.4 x 10(4); color index 6:1.3 +/- 0.6 x 10(5)) were significantly lower than titers at 0-h exposure (color index 3: 5.7 +/- 2.9 x 10(5); color index 6: 7.4 +/- 1.3 x 10(5)). Virus titers in pineapple juices of color index 3 were significantly lower than titers of the virus in juices of index 6. In cell culture medium (pH 7.4), SA11 titer remained stable over 3 h at 28 degrees C. However, at pH 3.6, the virus titer was reduced to a level not significantly different from that of the virus in pineapple juice of color index 6 (pH 3.7). In conclusion, papaya and honeydew melon juices, in contrast to pineapple juice, have the potential to transmit rotavirus. Inactivation of SA11 virus in pineapple juice can be possibly attributed to low pH and constituent(s) in the juice.
    Matched MeSH terms: Food Handling/methods*
  19. Estuningsih S, Kress C, Hassan AA, Akineden O, Schneider E, Usleber E
    J Food Prot, 2006 Dec;69(12):3013-7.
    PMID: 17186672
    To determine the occurrence of Salmonella and Shigella in infant formula from Southeast Asia, 74 packages of dehydrated powdered infant follow-on formula (recommended age, > 4 months) from five different manufacturers, four from Indonesia and one from Malaysia, were analyzed. None of the 25-g test portions yielded Salmonella or Shigella. However, further identification of colonies growing on selective media used for Salmonella and Shigella detection revealed the frequent occurrence of several other Enterobacteriaceae species. A total of 35 samples (47%) were positive for Enterobacteriaceae. Ten samples (13.5%) from two Indonesian manufacturers yielded Enterobacter sakazakii. Other Enterobacteriaceae isolated included Pantoea spp. (n = 12), Escherichia hermanii (n = 10), Enterobacter cloacae (n = 8), Klebsiella pneumoniae subsp. pneumoniae (n = 3), Citrobacter spp. (n = 2), Serratia spp. (n = 2), and Escherichia coli (n = 2). To our knowledge, this is the first report to describe the contamination of dehydrated powdered infant formula from Indonesia with E. sakazakii and several other Enterobacteriaceae that could be opportunistic pathogens. Improper preparation and conservation of these products could result in a health risk for infants in Indonesia.
    Matched MeSH terms: Food Handling/methods*
  20. Anang DM, Rusul G, Radu S, Bakar J, Beuchat LR
    J Food Prot, 2006 Aug;69(8):1913-9.
    PMID: 16924917
    Oxalic acid was evaluated as a treatment for reducing populations of naturally occurring microorganisms on raw chicken. Raw chicken breasts were dipped in solutions of oxalic acid (0, 0.5, 1.0, 1.5, and 2.0%, wt/vol) for 10, 20, and 30 min, individually packed in oxygen-permeable polyethylene bags, and stored at 4 degrees C. Total plate counts of aerobic bacteria and populations of Pseudomonas spp. and Enterobacteriaceae on breasts were determined before treatment and after storage for 1, 3, 7, 10, and 14 days. The pH and Hunter L, a, and b values of the breast surface were measured. Total plate counts were ca. 1.5 and 4.0 log CFU/g higher on untreated chicken breasts after storage for 7 and 14 days, respectively, than on breasts treated with 0.5% oxalic acid, regardless of dip time. Differences in counts on chicken breasts treated with water and 1.0 to 2.0% of oxalic acid were greater. Populations of Pseudomonas spp. on chicken breasts treated with 0.5 to 2.0% oxalic acid and stored at 4 degrees C for 1 day were less than 2 log CFU/g (detection limit), compared with 5.14 log CFU/g on untreated breasts. Pseudomonas grew on chicken breasts treated with 0.5% oxalic acid to reach counts not exceeding 3.88 log CFU/g after storage for 14 days. Counts on untreated chicken exceeded 8.83 log CFU/g at 14 days. Treatment with oxalic acid caused similar reductions in Enterobacteriaceae counts. Kocuria rhizophila was the predominant bacterium isolated from treated chicken. Other common bacteria included Escherichia coli and Empedobacter brevis. Treatment with oxalic acid caused a slight darkening in color (decreased Hunter L value), retention of redness (increased Hunter a value), and increase in yellowness (increased Hunter b value). Oxalic acid has potential for use as a sanitizer to reduce populations of spoilage microorganisms naturally occurring on raw chicken, thereby extending chicken shelf life.
    Matched MeSH terms: Food Handling/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links