Displaying publications 21 - 40 of 67 in total

Abstract:
Sort:
  1. Hector A, Philipson C, Saner P, Chamagne J, Dzulkifli D, O'Brien M, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3303-15.
    PMID: 22006970 DOI: 10.1098/rstb.2011.0094
    Relatively, little is known about the relationship between biodiversity and ecosystem functioning in forests, especially in the tropics. We describe the Sabah Biodiversity Experiment: a large-scale, long-term field study on the island of Borneo. The project aims at understanding the relationship between tree species diversity and the functioning of lowland dipterocarp rainforest during restoration following selective logging. The experiment is planned to run for several decades (from seed to adult tree), so here we focus on introducing the project and its experimental design and on assessing initial conditions and the potential for restoration of the structure and functioning of the study system, the Malua Forest Reserve. We estimate residual impacts 22 years after selective logging by comparison with an appropriate neighbouring area of primary forest in Danum Valley of similar conditions. There was no difference in the alpha or beta species diversity of transect plots in the two forest types, probably owing to the selective nature of the logging and potential effects of competitive release. However, despite equal total stem density, forest structure differed as expected with a deficit of large trees and a surfeit of saplings in selectively logged areas. These impacts on structure have the potential to influence ecosystem functioning. In particular, above-ground biomass and carbon pools in selectively logged areas were only 60 per cent of those in the primary forest even after 22 years of recovery. Our results establish the initial conditions for the Sabah Biodiversity Experiment and confirm the potential to accelerate restoration by using enrichment planting of dipterocarps to overcome recruitment limitation. What role dipterocarp diversity plays in restoration only will become clear with long-term results.
    Matched MeSH terms: Forestry
  2. Woodcock P, Edwards DP, Fayle TM, Newton RJ, Khen CV, Bottrell SH, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3256-64.
    PMID: 22006966 DOI: 10.1098/rstb.2011.0031
    South East Asia is widely regarded as a centre of threatened biodiversity owing to extensive logging and forest conversion to agriculture. In particular, forests degraded by repeated rounds of intensive logging are viewed as having little conservation value and are afforded meagre protection from conversion to oil palm. Here, we determine the biological value of such heavily degraded forests by comparing leaf-litter ant communities in unlogged (natural) and twice-logged forests in Sabah, Borneo. We accounted for impacts of logging on habitat heterogeneity by comparing species richness and composition at four nested spatial scales, and examining how species richness was partitioned across the landscape in each habitat. We found that twice-logged forest had fewer species occurrences, lower species richness at small spatial scales and altered species composition compared with natural forests. However, over 80 per cent of species found in unlogged forest were detected within twice-logged forest. Moreover, greater species turnover among sites in twice-logged forest resulted in identical species richness between habitats at the largest spatial scale. While two intensive logging cycles have negative impacts on ant communities, these degraded forests clearly provide important habitat for numerous species and preventing their conversion to oil palm and other crops should be a conservation priority.
    Matched MeSH terms: Forestry
  3. Willott SJ
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1783-90.
    PMID: 11605621
    The effects of selective logging on the diversity and species composition of moths were investigated by sampling from multiple sites in primary forest, both understorey and canopy, and logged forest at Danum Valley, Sabah, Malaysia. The diversity of individual sites was similar, although rarefied species richness of logged forest was 17% lower than for primary forest (understorey and canopy combined). There was significant heterogeneity in faunal composition and measures of similarity (NESS index) among primary forest understorey sites which may be as great as those between primary understorey and logged forest. The lowest similarity values were between primary forest understorey and canopy, indicating a distinct canopy fauna. A number of species encountered in the logged forest were confined to, or more abundant in, the canopy of primary forest. Approximately 10% of species were confined to primary forest across a range of species' abundances, suggesting this is a minimum estimate for the number of species lost following logging. The importance of accounting for heterogeneity within primary forest and sampling in the canopy when measuring the effects of disturbance on tropical forest communities are emphasized.
    Matched MeSH terms: Forestry*
  4. Douglas I, Bidin K, Balamurugan G, Chappell NA, Walsh RP, Greer T, et al.
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1749-61.
    PMID: 11605619
    Ten years' hydrological investigations at Danum have provided strong evidence of the effects of extremes of drought, as in the April 1992 El Niño southern oscillation event, and flood, as in January 1996. The 1.5 km2 undisturbed forest control catchment experienced a complete drying out of the stream for the whole 1.5 km of defined channel above the gauging station in 1992, but concentrated surface flow along every declivity from within a few metres of the catchment divide after the exceptional rains of 19 January 1996. Under these natural conditions, erosion is episodic. Sediment is discharged in pulses caused by storm events, collapse of debris dams and occasional landslips. Disturbance by logging accentuates this irregular regime. In the first few months following disturbance, a wave of sediment is moved by each storm, but over subsequent years, rare events scour sediment from bare areas, gullies and channel deposits. The spatial distribution of sediment sources changes with time after logging, as bare areas on slopes are revegetated and small gullies are filled with debris. Extreme storm events, as in January 1996, cause logging roads to collapse, with landslides leading to surges of sediment into channels, reactivating the pulsed sediment delivery by every storm that happened immediately after logging. These effects are not dampened out with increasing catchment scale. Even the 721 km2 Sungai Segama has a sediment yield regime dominated by extreme events, the sediment yield in that single day on 19 January 1996 exceeding the annual sediment load in several previous years. In a large disturbed catchment, such road failures and logging-activity-induced mass movements increase the mud and silt in floodwaters affecting settlements downstream. Management systems require long-term sediment reduction strategies. This implies careful road design and good water movement regulation and erosion control throughout the logging process.
    Matched MeSH terms: Forestry*
  5. Douglas I
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1725-38.
    PMID: 11605617
    Investigations of land management impacts on hydrology are well developed in South-East Asia, having been greatly extended by national organizations in the last two decades. Regional collaborative efforts, such as the ASEAN-US watershed programme, have helped develop skills and long-running monitoring programmes. Work in different countries is significant for particular aspects: the powerful effects of both cyclones and landsliding in Taiwan, the significance of lahars in Java, of small-scale agriculture in Thailand and plantation establishment in Malaysia. Different aid programmes have contributed specialist knowledge such as British work on reservoir sedimentation, Dutch, Swedish and British work on softwood plantations and US work in hill-tribe agriculture. Much has been achieved through individual university research projects, including PhD and MSc theses. The net result is that for most countries there is now good information on changes in the rainfall-run-off relationship due to forest disturbance or conversion, some information on the impacts on sediment delivery and erosion of hillslopes, but relatively little about the dynamics and magnitude of nutrient losses. Improvements have been made in the ability to model the consequences of forest conversion and of selective logging and exciting prospects exist for the development of better predictions of transfer of water from the hillslopes to the stream channels using techniques such as multilevel modelling. Understanding of the processes involved has advanced through the detailed monitoring made possible at permanent field stations such as that at Danum Valley, Sabah.
    Matched MeSH terms: Forestry*
  6. Martin-Smith KM, Laird LM, Bullough L, Lewis MG
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1803-10.
    PMID: 11605623
    Community resistance to, and resilience from, perturbation will determine the trajectory of recovery from disturbance. Although selective timber extraction is considered a severe disturbance, fish communities from headwater streams around Danum Valley Field Centre, Sabah, Malaysia, showed few long-term changes in species composition or abundance. However, some species showed short-term (< 18 months) absence or decrease in abundance. These observations suggested that both resistance and resilience were important in maintaining long-term fish community structure. Resistance to perturbation was tested by monitoring fish communities before and after the creation of log-debris dams, while resilience was investigated by following the time-course of recolonization following complete removal of all fish. High community resistance was generally shown although the response was site-specific, dependent on the composition of the starting community, the size of the stream and physical habitat changes. High resilience was demonstrated in all recolonization experiments with strong correlations between pre- and post-defaunation communities, although there was a significant difference between pool and riffle habitats in the time-course of recovery. These differences can be explained by the movement characteristics of the species found in the different habitats. Resilience appeared to be a more predictable characteristic of the community than resistance and the implications of this for ensuring the long-term persistence of fish in the area are discussed.
    Matched MeSH terms: Forestry
  7. Bagchi R, Philipson CD, Slade EM, Hector A, Phillips S, Villanueva JF, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3246-55.
    PMID: 22006965 DOI: 10.1098/rstb.2011.0034
    Much of the forest remaining in South East Asia has been selectively logged. The processes promoting species coexistence may be the key to the recovery and maintenance of diversity in these forests. One such process is the Janzen-Connell mechanism, where specialized natural enemies such as seed predators maintain diversity by inhibiting regeneration near conspecifics. In Neotropical forests, anthropogenic disturbance can disrupt the Janzen-Connell mechanism, but similar data are unavailable for South East Asia. We investigated the effects of conspecific density (two spatial scales) and distance from fruiting trees on seed and seedling survival of the canopy tree Parashorea malaanonan in unlogged and logged forests in Sabah, Malaysia. The production of mature seeds was higher in unlogged forest, perhaps because high adult densities facilitate pollination or satiate pre-dispersal predators. In both forest types, post-dispersal survival was reduced by small-scale (1 m(2)) conspecific density, but not by proximity to the nearest fruiting tree. Large-scale conspecific density (seeds per fruiting tree) reduced predation, probably by satiating predators. Higher seed production in unlogged forest, in combination with slightly higher survival, meant that recruitment was almost entirely limited to unlogged forest. Thus, while logging might not affect the Janzen-Connell mechanism at this site, it may influence the recruitment of particular species.
    Matched MeSH terms: Forestry*
  8. Chave J, Condit R, Muller-Landau HC, Thomas SC, Ashton PS, Bunyavejchewin S, et al.
    PLoS Biol, 2008 Mar 04;6(3):e45.
    PMID: 18318600 DOI: 10.1371/journal.pbio.0060045
    In Amazonian tropical forests, recent studies have reported increases in aboveground biomass and in primary productivity, as well as shifts in plant species composition favouring fast-growing species over slow-growing ones. This pervasive alteration of mature tropical forests was attributed to global environmental change, such as an increase in atmospheric CO2 concentration, nutrient deposition, temperature, drought frequency, and/or irradiance. We used standardized, repeated measurements of over 2 million trees in ten large (16-52 ha each) forest plots on three continents to evaluate the generality of these findings across tropical forests. Aboveground biomass increased at seven of our ten plots, significantly so at four plots, and showed a large decrease at a single plot. Carbon accumulation pooled across sites was significant (+0.24 MgC ha(-1) y(-1), 95% confidence intervals [0.07, 0.39] MgC ha(-1) y(-1)), but lower than reported previously for Amazonia. At three sites for which we had data for multiple census intervals, we found no concerted increase in biomass gain, in conflict with the increased productivity hypothesis. Over all ten plots, the fastest-growing quartile of species gained biomass (+0.33 [0.09, 0.55] % y(-1)) compared with the tree community as a whole (+0.15 % y(-1)); however, this significant trend was due to a single plot. Biomass of slow-growing species increased significantly when calculated over all plots (+0.21 [0.02, 0.37] % y(-1)), and in half of our plots when calculated individually. Our results do not support the hypothesis that fast-growing species are consistently increasing in dominance in tropical tree communities. Instead, they suggest that our plots may be simultaneously recovering from past disturbances and affected by changes in resource availability. More long-term studies are necessary to clarify the contribution of global change to the functioning of tropical forests.
    Matched MeSH terms: Forestry
  9. Su AT, Maeda S, Fukumoto J, Darus A, Hoe VC, Miyai N, et al.
    Occup Environ Med, 2013 Jul;70(7):498-504.
    PMID: 23645621 DOI: 10.1136/oemed-2012-101321
    The dose-response relationship for hand-transmitted vibration has been investigated extensively in temperate environments. Since the clinical features of hand-arm vibration syndrome (HAVS) differ between the temperate and tropical environment, we conducted this study to investigate the dose-response relationship of HAVS in a tropical environment.
    Matched MeSH terms: Forestry/instrumentation
  10. Ewers RM, Boyle MJ, Gleave RA, Plowman NS, Benedick S, Bernard H, et al.
    Nat Commun, 2015 Apr 13;6:6836.
    PMID: 25865801 DOI: 10.1038/ncomms7836
    Invertebrates are dominant species in primary tropical rainforests, where their abundance and diversity contributes to the functioning and resilience of these globally important ecosystems. However, more than one-third of tropical forests have been logged, with dramatic impacts on rainforest biodiversity that may disrupt key ecosystem processes. We find that the contribution of invertebrates to three ecosystem processes operating at three trophic levels (litter decomposition, seed predation and removal, and invertebrate predation) is reduced by up to one-half following logging. These changes are associated with decreased abundance of key functional groups of termites, ants, beetles and earthworms, and an increase in the abundance of small mammals, amphibians and insectivorous birds in logged relative to primary forest. Our results suggest that ecosystem processes themselves have considerable resilience to logging, but the consistent decline of invertebrate functional importance is indicative of a human-induced shift in how these ecological processes operate in tropical rainforests.
    Matched MeSH terms: Forestry/statistics & numerical data*
  11. Ehbrecht M, Seidel D, Annighöfer P, Kreft H, Köhler M, Zemp DC, et al.
    Nat Commun, 2021 01 22;12(1):519.
    PMID: 33483481 DOI: 10.1038/s41467-020-20767-z
    The complexity of forest structures plays a crucial role in regulating forest ecosystem functions and strongly influences biodiversity. Yet, knowledge of the global patterns and determinants of forest structural complexity remains scarce. Using a stand structural complexity index based on terrestrial laser scanning, we quantify the structural complexity of boreal, temperate, subtropical and tropical primary forests. We find that the global variation of forest structural complexity is largely explained by annual precipitation and precipitation seasonality (R² = 0.89). Using the structural complexity of primary forests as benchmark, we model the potential structural complexity across biomes and present a global map of the potential structural complexity of the earth´s forest ecoregions. Our analyses reveal distinct latitudinal patterns of forest structure and show that hotspots of high structural complexity coincide with hotspots of plant diversity. Considering the mechanistic underpinnings of forest structural complexity, our results suggest spatially contrasting changes of forest structure with climate change within and across biomes.
    Matched MeSH terms: Forestry/methods
  12. Laurance SG, Laurance WF
    Nature, 2015 Nov 19;527(7578):305.
    PMID: 26581280 DOI: 10.1038/527305a
    Matched MeSH terms: Forestry/methods; Forestry/trends*; Forestry/statistics & numerical data*
  13. Wijedasa LS, Posa MR, Clements GR
    Nature, 2015 Nov 19;527(7578):305.
    PMID: 26581283 DOI: 10.1038/527305b
    Matched MeSH terms: Forestry/methods
  14. Malhi Y, Riutta T, Wearn OR, Deere NJ, Mitchell SL, Bernard H, et al.
    Nature, 2022 Dec;612(7941):707-713.
    PMID: 36517596 DOI: 10.1038/s41586-022-05523-1
    Old-growth tropical forests are widely recognized as being immensely important for their biodiversity and high biomass1. Conversely, logged tropical forests are usually characterized as degraded ecosystems2. However, whether logging results in a degradation in ecosystem functions is less clear: shifts in the strength and resilience of key ecosystem processes in large suites of species have rarely been assessed in an ecologically integrated and quantitative framework. Here we adopt an ecosystem energetics lens to gain new insight into the impacts of tropical forest disturbance on a key integrative aspect of ecological function: food pathways and community structure of birds and mammals. We focus on a gradient spanning old-growth and logged forests and oil palm plantations in Borneo. In logged forest there is a 2.5-fold increase in total resource consumption by both birds and mammals compared to that in old-growth forests, probably driven by greater resource accessibility and vegetation palatability. Most principal energetic pathways maintain high species diversity and redundancy, implying maintained resilience. Conversion of logged forest into oil palm plantation results in the collapse of most energetic pathways. Far from being degraded ecosystems, even heavily logged forests can be vibrant and diverse ecosystems with enhanced levels of ecological function.
    Matched MeSH terms: Forestry*
  15. Brodie JF, Mohd-Azlan J, Chen C, Wearn OR, Deith MCM, Ball JGC, et al.
    Nature, 2023 Aug;620(7975):807-812.
    PMID: 37612395 DOI: 10.1038/s41586-023-06410-z
    The United Nations recently agreed to major expansions of global protected areas (PAs) to slow biodiversity declines1. However, although reserves often reduce habitat loss, their efficacy at preserving animal diversity and their influence on biodiversity in surrounding unprotected areas remain unclear2-5. Unregulated hunting can empty PAs of large animals6, illegal tree felling can degrade habitat quality7, and parks can simply displace disturbances such as logging and hunting to unprotected areas of the landscape8 (a phenomenon called leakage). Alternatively, well-functioning PAs could enhance animal diversity within reserves as well as in nearby unprotected sites9 (an effect called spillover). Here we test whether PAs across mega-diverse Southeast Asia contribute to vertebrate conservation inside and outside their boundaries. Reserves increased all facets of bird diversity. Large reserves were also associated with substantially enhanced mammal diversity in the adjacent unprotected landscape. Rather than PAs generating leakage that deteriorated ecological conditions elsewhere, our results are consistent with PAs inducing spillover that benefits biodiversity in surrounding areas. These findings support the United Nations goal of achieving 30% PA coverage by 2030 by demonstrating that PAs are associated with higher vertebrate diversity both inside their boundaries and in the broader landscape.
    Matched MeSH terms: Forestry/legislation & jurisprudence; Forestry/methods; Forestry/trends
  16. Tripathi BM, Edwards DP, Mendes LW, Kim M, Dong K, Kim H, et al.
    Mol Ecol, 2016 May;25(10):2244-57.
    PMID: 26994316 DOI: 10.1111/mec.13620
    Selective logging and forest conversion to oil palm agriculture are rapidly altering tropical forests. However, functional responses of the soil microbiome to these land-use changes are poorly understood. Using 16S rRNA gene and shotgun metagenomic sequencing, we compared composition and functional attributes of soil biota between unlogged, once-logged and twice-logged rainforest, and areas converted to oil palm plantations in Sabah, Borneo. Although there was no significant effect of logging history, we found a significant difference between the taxonomic and functional composition of both primary and logged forests and oil palm. Oil palm had greater abundances of genes associated with DNA, RNA, protein metabolism and other core metabolic functions, but conversely, lower abundance of genes associated with secondary metabolism and cell-cell interactions, indicating less importance of antagonism or mutualism in the more oligotrophic oil palm environment. Overall, these results show a striking difference in taxonomic composition and functional gene diversity of soil microorganisms between oil palm and forest, but no significant difference between primary forest and forest areas with differing logging history. This reinforces the view that logged forest retains most features and functions of the original soil community. However, networks based on strong correlations between taxonomy and functions showed that network complexity is unexpectedly increased due to both logging and oil palm agriculture, which suggests a pervasive effect of both land-use changes on the interaction of soil microbes.
    Matched MeSH terms: Forestry*
  17. Hemprich-Bennett DR, Kemp VA, Blackman J, Struebig MJ, Lewis OT, Rossiter SJ, et al.
    Mol Ecol, 2021 11;30(22):5844-5857.
    PMID: 34437745 DOI: 10.1111/mec.16153
    Habitat degradation is pervasive across the tropics and is particularly acute in Southeast Asia, with major implications for biodiversity. Much research has addressed the impact of degradation on species diversity; however, little is known about how ecological interactions are altered, including those that constitute important ecosystem functions such as consumption of herbivores. To examine how rainforest degradation alters trophic interaction networks, we applied DNA metabarcoding to construct interaction networks linking forest-dwelling insectivorous bat species and their prey, comparing old-growth forest and forest degraded by logging in Sabah, Borneo. Individual bats in logged rainforest consumed a lower richness of prey than those in old-growth forest. As a result, interaction networks in logged forests had a less nested structure. These network structures were associated with reduced network redundancy and thus increased vulnerability to perturbations in logged forests. Our results show how ecological interactions change between old-growth and logged forests, with potentially negative implications for ecosystem function and network stability.
    Matched MeSH terms: Forestry*
  18. Thüs H, Wolseley P, Carpenter D, Eggleton P, Reynolds G, Vairappan CS, et al.
    Microorganisms, 2021 Mar 05;9(3).
    PMID: 33807993 DOI: 10.3390/microorganisms9030541
    Many lowland rainforests in Southeast Asia are severely altered by selective logging and there is a need for rapid assessment methods to identify characteristic communities of old growth forests and to monitor restoration success in regenerating forests. We have studied the effect of logging on the diversity and composition of lichen communities on trunks of trees in lowland rainforests of northeast Borneo dominated by Dipterocarpaceae. Using data from field observations and vouchers collected from plots in disturbed and undisturbed forests, we compared a taxonomy-based and a taxon-free method. Vouchers were identified to genus or genus group and assigned to functional groups based on sets of functional traits. Both datasets allowed the detection of significant differences in lichen communities between disturbed and undisturbed forest plots. Bark type diversity and the proportion of large trees, particularly those belonging to the family Dipterocarpaceae, were the main drivers of lichen community structure. Our results confirm the usefulness of a functional groups approach for the rapid assessment of tropical lowland rainforests in Southeast Asia. A high proportion of Dipterocarpaceae trees is revealed as an essential element for the restoration of near natural lichen communities in lowland rainforests of Southeast Asia.
    Matched MeSH terms: Forestry
  19. Tripathi BM, Kim M, Singh D, Lee-Cruz L, Lai-Hoe A, Ainuddin AN, et al.
    Microb Ecol, 2012 Aug;64(2):474-84.
    PMID: 22395784 DOI: 10.1007/s00248-012-0028-8
    The dominant factors controlling soil bacterial community variation within the tropics are poorly known. We sampled soils across a range of land use types--primary (unlogged) and logged forests and crop and pasture lands in Malaysia. PCR-amplified soil DNA for the bacterial 16S rRNA gene targeting the V1-V3 region was pyrosequenced using the 454 Roche machine. We found that land use in itself has a weak but significant effect on the bacterial community composition. However, bacterial community composition and diversity was strongly correlated with soil properties, especially soil pH, total carbon, and C/N ratio. Soil pH was the best predictor of bacterial community composition and diversity across the various land use types, with the highest diversity close to neutral pH values. In addition, variation in phylogenetic structure of dominant lineages (Alphaproteobacteria, Beta/Gammaproteobacteria, Acidobacteria, and Actinobacteria) is also significantly correlated with soil pH. Together, these results confirm the importance of soil pH in structuring soil bacterial communities in Southeast Asia. Our results also suggest that unlike the general diversity pattern found for larger organisms, primary tropical forest is no richer in operational taxonomic units of soil bacteria than logged forest, and agricultural land (crop and pasture) is actually richer than primary forest, partly due to selection of more fertile soils that have higher pH for agriculture and the effects of soil liming raising pH.
    Matched MeSH terms: Forestry
  20. McGuire KL, D'Angelo H, Brearley FQ, Gedallovich SM, Babar N, Yang N, et al.
    Microb Ecol, 2015 May;69(4):733-47.
    PMID: 25149283 DOI: 10.1007/s00248-014-0468-4
    Human land use alters soil microbial composition and function in a variety of systems, although few comparable studies have been done in tropical forests and tropical agricultural production areas. Logging and the expansion of oil palm agriculture are two of the most significant drivers of tropical deforestation, and the latter is most prevalent in Southeast Asia. The aim of this study was to compare soil fungal communities from three sites in Malaysia that represent three of the most dominant land-use types in the Southeast Asia tropics: a primary forest, a regenerating forest that had been selectively logged 50 years previously, and a 25-year-old oil palm plantation. Soil cores were collected from three replicate plots at each site, and fungal communities were sequenced using the Illumina platform. Extracellular enzyme assays were assessed as a proxy for soil microbial function. We found that fungal communities were distinct across all sites, although fungal composition in the regenerating forest was more similar to the primary forest than either forest community was to the oil palm site. Ectomycorrhizal fungi, which are important associates of the dominant Dipterocarpaceae tree family in this region, were compositionally distinct across forests, but were nearly absent from oil palm soils. Extracellular enzyme assays indicated that the soil ecosystem in oil palm plantations experienced altered nutrient cycling dynamics, but there were few differences between regenerating and primary forest soils. Together, these results show that logging and the replacement of primary forest with oil palm plantations alter fungal community and function, although forests regenerating from logging had more similarities with primary forests in terms of fungal composition and nutrient cycling potential. Since oil palm agriculture is currently the mostly rapidly expanding equatorial crop and logging is pervasive across tropical ecosystems, these findings may have broad applicability.
    Matched MeSH terms: Forestry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links