Displaying publications 21 - 24 of 24 in total

Abstract:
Sort:
  1. Gill MSA, Hassan SS, Ahemad N
    Eur J Med Chem, 2019 Oct 01;179:423-448.
    PMID: 31265935 DOI: 10.1016/j.ejmech.2019.06.058
    HIV infection is a major challenge to mankind and a definitive cure or a viable vaccine for HIV is still elusive. HIV-1 is constantly evolving and developing resistant against clinically used anti-HIV drugs thus posing serious hurdles in the treatment of HIV infection. This prompts the need to developed new anti-HIV drugs; preferentially adopting intelligent ways to counteract an evolving virus. Highly Active Anti-Retroviral Therapy (HAART): a strategy involving multiple targeting through various drugs has proven beneficial in the management of AIDS. However, it is a complex regimen with high drug load, increased risk of drug interactions and adverse effects, which lead to poor patient compliance. Reverse transcriptase (RT) and Integrase (IN) are two pivotal enzymes in HIV-1 lifecycle with high structural and functional analogy to be perceived as drug-able targets for novel dual-purpose inhibitors. Designed multi-functional ligand (DML) is a modern strategy by which multiple targets can be exploited using a single chemical entity. A single chemical entity acting on multiple targets can be much more effective than a complex multi-drug regimen. The development of such multifunctional ligands is highly valued in anti-HIV drug discovery with the proposed advantage of being able to stop two or more stages of viral replication cycle. This review will encompass the evolution of the RT-IN dual inhibitory scaffolds reported so far and the contribution made by the leading research groups over the years in this field.
    Matched MeSH terms: HIV-1/drug effects*
  2. Yap PK, Loo Xin GL, Tan YY, Chellian J, Gupta G, Liew YK, et al.
    J Pharm Pharmacol, 2019 Sep;71(9):1339-1352.
    PMID: 31144296 DOI: 10.1111/jphp.13107
    OBJECTIVES: Antiretroviral agents (ARVs) have been the most promising line of therapy in the management of human immunodeficiency virus (HIV) infections. Some of these ARVs are used in the pre-exposure prophylaxis (PrEP) to suppress the transmission of HIV. Prophylaxis is primarily used in uninfected people, before exposure, to effectively prevent HIV infection. Several studies have shown that ART PrEP prevents HIV acquisition from sexual, blood and mother-to-child transmissions. However, there are also several challenges and limitations to PrEP. This review focuses on the current antiretroviral therapies used in PrEP.

    KEY FINDINGS: Among ARVs, the most common drugs employed from the class of entry inhibitors are maraviroc (MVC), which is a CCR5 receptor antagonist. Other entry inhibitors like emtricitabine (FTC) and tenofovir (TFV) are also used. Rilpivirine (RPV) and dapivirine (DPV) are the most common drugs employed from the Non-nucleoside reverse transcriptase inhibitor (NNRTIs) class, whereas, tenofovir disoproxil fumarate (TDF) is primarily used in the Nucleoside Reverse Transcriptase Inhibitor (NRTIs) class. Cabotegravir (CAB) is an analog of dolutegravir, and it is an integrase inhibitor. Some of these drugs are also used in combination with other drugs from the same class.

    SUMMARY: Some of the most common pre-exposure prophylactic strategies employed currently are the use of inhibitors, namely entry inhibitors, non-nucleoside reverse transcriptase inhibitors, nucleoside reverse transcriptase inhibitors, integrase and protease inhibitors. In addition, we have also discussed on the adverse effects caused by ART in PrEP, pharmacoeconomics factors and the use of antiretroviral prophylaxis in serodiscordant couples.

    Matched MeSH terms: HIV-1/drug effects
  3. Saoin S, Wisitponchai T, Intachai K, Chupradit K, Moonmuang S, Nangola S, et al.
    Asian Pac J Allergy Immunol, 2018 06;36(2):126-135.
    PMID: 28802032 DOI: 10.12932/AP-280217-0037
    BACKGROUND: AnkGAG1D4 is an artificial ankyrin repeat protein which recognizes the capsid protein (CA) of the human immunodeficiency virus type 1 (HIV-1) and exhibits the intracellular antiviral activity on the viral assembly process. Improving the binding affinity of AnkGAG1D4 would potentially enhance the AnkGAG1D4-mediated antiviral activity.

    OBJECTIVE: To augment the affinity of AnkGAG1D4 scaffold towards its CA target, through computational predictions and experimental designs.

    METHOD: Three dimensional structure of the binary complex formed by AnkGAG1D4 docked to the CA was used as a model for van der Waals (vdW) binding energy calculation. The results generated a simple guideline to select the amino acids for modifications. Following the predictions, modified AnkGAG1D4 proteins were produced and further evaluated for their CA-binding activity, using ELISA-modified method and bio-layer interferometry (BLI).

    RESULTS: Tyrosine at position 56 (Y56) in AnkGAG1D4 was experimentally identified as the most critical residue for CA binding. Rational substitutions of this residue diminished the binding affinity. However, vdW calculation preconized to substitute serine for tyrosine at position 45. Remarkably, the affinity for the viral CA was significantly enhanced in AnkGAG1D4-S45Y mutant, with no alteration of the target specificity.

    CONCLUSIONS: The S-to-Y mutation at position 45, based on the prediction of interacting amino acids and on vdW binding energy calculation, resulted in a significant enhancement of the affinity of AnkGAG1D4 ankyrin for its CA target. AnkGAG1D4-S45Y mutant represented the starting point for further construction of variants with even higher affinity towards the viral CA, and higher therapeutic potential in the future.

    Matched MeSH terms: HIV-1/drug effects*
  4. Hora B, Keating SM, Chen Y, Sanchez AM, Sabino E, Hunt G, et al.
    PLoS One, 2016;11(6):e0157340.
    PMID: 27314585 DOI: 10.1371/journal.pone.0157340
    HIV-1 subtypes and drug resistance are routinely tested by many international surveillance groups. However, results from different sites often vary. A systematic comparison of results from multiple sites is needed to determine whether a standardized protocol is required for consistent and accurate data analysis. A panel of well-characterized HIV-1 isolates (N = 50) from the External Quality Assurance Program Oversight Laboratory (EQAPOL) was assembled for evaluation at seven international sites. This virus panel included seven subtypes, six circulating recombinant forms (CRFs), nine unique recombinant forms (URFs) and three group O viruses. Seven viruses contained 10 major drug resistance mutations (DRMs). HIV-1 isolates were prepared at a concentration of 107 copies/ml and compiled into blinded panels. Subtypes and DRMs were determined with partial or full pol gene sequences by conventional Sanger sequencing and/or Next Generation Sequencing (NGS). Subtype and DRM results were reported and decoded for comparison with full-length genome sequences generated by EQAPOL. The partial pol gene was amplified by RT-PCR and sequenced for 89.4%-100% of group M viruses at six sites. Subtyping results of majority of the viruses (83%-97.9%) were correctly determined for the partial pol sequences. All 10 major DRMs in seven isolates were detected at these six sites. The complete pol gene sequence was also obtained by NGS at one site. However, this method missed six group M viruses and sequences contained host chromosome fragments. Three group O viruses were only characterized with additional group O-specific RT-PCR primers employed by one site. These results indicate that PCR protocols and subtyping tools should be standardized to efficiently amplify diverse viruses and more consistently assign virus genotypes, which is critical for accurate global subtype and drug resistance surveillance. Targeted NGS analysis of partial pol sequences can serve as an alternative approach, especially for detection of low-abundance DRMs.
    Matched MeSH terms: HIV-1/drug effects
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links