Displaying publications 21 - 40 of 53 in total

Abstract:
Sort:
  1. Liang KH, Lu YH, Niu CW, Chang SK, Chen YR, Cheng CY, et al.
    J Hum Genet, 2020 Jul;65(7):619-625.
    PMID: 32246049 DOI: 10.1038/s10038-020-0745-7
    The Fabry disease-causing mutation, the GLA IVS4+919G>A (designated GLA IVS4), is very prevalent in patients with hypertrophic cardiomyopathy in Taiwan. This X-linked mutation has also been found in patients in Kyushu, Japan and Southeast Asia. To investigate the age and the possible ancestral origin of this mutation, a total of 33 male patients with the GLA IVS4+919G>A mutation, born in Taiwan, Japan, Singapore, Malaysia, Vietnam, and the Fujian and Guangdong provinces of China, were studied. Peripheral bloods were collected, and the Ilumina Infinium CoreExome-24 microarray was used for dense genotyping. A mutation-carrying haplotype was discovered which was shared by all 33 patients. This haplotype does not exist in 15 healthy persons without the mutation. Rather, a wide diversity of haplotypes was found in the vicinity of the mutation site, supporting the existence of a single founder of the GLA IVS4 mutation. The age of the founder mutation was estimated by the lengths of the mutation-carrying haplotypes based on the linkage-disequilibrium decay theory. The first, second, and third quartile of the age estimates are 800.7, 922.6, and 1068.4 years, respectively. We concluded that the GLA IVS4+919G>A mutation originated from a single mutational event that occurred in a Chinese chromosome more than 800 years ago.
    Matched MeSH terms: Haplotypes/genetics
  2. Lesseur C, Diergaarde B, Olshan AF, Wünsch-Filho V, Ness AR, Liu G, et al.
    Nat Genet, 2016 Dec;48(12):1544-1550.
    PMID: 27749845 DOI: 10.1038/ng.3685
    We conducted a genome-wide association study of oral cavity and pharyngeal cancer in 6,034 cases and 6,585 controls from Europe, North America and South America. We detected eight significantly associated loci (P < 5 × 10-8), seven of which are new for these cancer sites. Oral and pharyngeal cancers combined were associated with loci at 6p21.32 (rs3828805, HLA-DQB1), 10q26.13 (rs201982221, LHPP) and 11p15.4 (rs1453414, OR52N2-TRIM5). Oral cancer was associated with two new regions, 2p23.3 (rs6547741, GPN1) and 9q34.12 (rs928674, LAMC3), and with known cancer-related loci-9p21.3 (rs8181047, CDKN2B-AS1) and 5p15.33 (rs10462706, CLPTM1L). Oropharyngeal cancer associations were limited to the human leukocyte antigen (HLA) region, and classical HLA allele imputation showed a protective association with the class II haplotype HLA-DRB1*1301-HLA-DQA1*0103-HLA-DQB1*0603 (odds ratio (OR) = 0.59, P = 2.7 × 10-9). Stratified analyses on a subgroup of oropharyngeal cases with information available on human papillomavirus (HPV) status indicated that this association was considerably stronger in HPV-positive (OR = 0.23, P = 1.6 × 10-6) than in HPV-negative (OR = 0.75, P = 0.16) cancers.
    Matched MeSH terms: Haplotypes/genetics
  3. Lee YC, Chan SH, Ren EC
    Immunogenetics, 2008 Nov;60(11):645-54.
    PMID: 18668235 DOI: 10.1007/s00251-008-0321-3
    Killer cell immunoglobulin-like receptors (KIR) gene frequencies have been shown to be distinctly different between populations and contribute to functional variation in the immune response. We have investigated KIR gene frequencies in 370 individuals representing three Asian populations in Singapore and report here the distribution of 14 KIR genes (2DL1, 2DL2, 2DL3, 2DL4, 2DL5, 2DS1, 2DS2, 2DS3, 2DS4, 2DS5, 3DL1, 3DL2, 3DL3, 3DS1) with two pseudogenes (2DP1, 3DP1) among Singapore Chinese (n = 210); Singapore Malay (n = 80), and Singapore Indian (n = 80). Four framework genes (KIR3DL3, 3DP1, 2DL4, 3DL2) and a nonframework pseudogene 2DP1 were detected in all samples while KIR2DS2, 2DL2, 2DL5, and 2DS5 had the greatest significant variation across the three populations. Fifteen significant linkage patterns, consistent with associations between genes of A and B haplotypes, were observed. Eighty-four distinct KIR profiles were determined in our populations, 38 of which had not been described in other populations. KIR haplotype studies were performed using nine Singapore Chinese families comprising 34 individuals. All genotypes could be resolved into corresponding pairs of existing haplotypes with eight distinct KIR genotypes and eight different haplotypes. The haplotype A2 with frequency of 63.9% was dominant in Singapore Chinese, comparable to that reported in Korean and Chinese Han. The A haplotypes predominate in Singapore Chinese, with ratio of A to B haplotypes of approximately 3:1. Comparison with KIR frequencies in other populations showed that Singapore Chinese shared similar distributions with Chinese Han, Japanese, and Korean; Singapore Indian was found to be comparable with North Indian Hindus while Singapore Malay resembled the Thai.
    Matched MeSH terms: Haplotypes/genetics
  4. Lee AS, Ho GH, Oh PC, Balram C, Ooi LL, Lim DT, et al.
    Hum Mutat, 2003 Aug;22(2):178.
    PMID: 12872263
    The mutation spectrum of the BRCA1 gene among ethnic groups from Asia has not been well studied. We investigated the frequency of mutations in the BRCA1 gene among Malay breast cancer patients from Singapore, independent of family history. By using the protein truncation test (PTT) and direct sequencing, BRCA1 mutations were detected in 6 of 49 (12.2%) unrelated patients. Four novel missense mutations in exon 11, T557A (1788A>G), T582A (1863A>G), N656S (2086A>G) and P684S (2169C>T) were identified in one patient. Two patients had missense mutations in exon 23, V1809A (5545T>C), which has been previously detected in individuals from Central and Eastern Europe. Three unrelated patients had the deleterious 2846insA frameshift mutation in exon 11. Methylation specific PCR (MSP) of the promoter region of the BRCA1 gene detected hypermethylation of tumor DNA in an additional 2 patients. Haplotype analysis using the microsatellite markers D17S855, D17S1323 and D17S1325 revealed a common haplotype for the three unrelated patients and their three relatives with the 2846insA mutation. These findings strongly suggest that the 2846insA mutation, the most common deleterious mutation in this study, may possibly be a founder mutation in breast cancer patients of Malay ethnic background.
    Matched MeSH terms: Haplotypes/genetics
  5. Ku CS, Teo SM, Naidoo N, Sim X, Teo YY, Pawitan Y, et al.
    J Hum Genet, 2011 Aug;56(8):552-60.
    PMID: 21677662 DOI: 10.1038/jhg.2011.54
    Copy number variations can be identified using newer genotyping arrays with higher single nucleotide polymorphisms (SNPs) density and copy number probes accompanied by newer algorithms. McCarroll et al. (2008) applied these to the HapMap II samples and identified 1316 copy number polymorphisms (CNPs). In our study, we applied the same approach to 859 samples from three Singapore populations and seven HapMap III populations. Approximately 50% of the 1291 autosomal CNPs were found to be polymorphic only in populations of non-African ancestry. Pairwise comparisons among the 10 populations showed substantial differences in the CNPs frequencies. Additionally, 698 CNPs showed significant differences with false discovery rate (FDR)<0.01 among the 10 populations and these loci overlap with known disease-associated or pharmacogenetic-related genes such as CFHR3 and CFHR1 (age related macular degeneration), GSTTI (metabolism of various carcinogenic compounds and cancers) and UGT2B17 (prostate cancer and graft-versus-host disease). The correlations between CNPs and genome-wide association studies-SNPs were investigated and several loci, which were previously unreported, that may potentially be implicated in complex diseases and traits were found; for example, childhood acute lymphoblastic leukaemia, age-related macular degeneration, breast cancer, response to antipsychotic treatment, rheumatoid arthritis and type-1 diabetes. Additionally, we also found 5014 novel copy number loci that have not been reported previously by McCarroll et al. (2008) in the 10 populations.
    Matched MeSH terms: Haplotypes/genetics*
  6. Kassogue Y, Diakite B, Kassogue O, Konate I, Tamboura K, Diarra Z, et al.
    Medicine (Baltimore), 2021 Jul 23;100(29):e26614.
    PMID: 34398016 DOI: 10.1097/MD.0000000000026614
    Cytochrome P450 enzymes play a central role in the phase I biotransformation process of a wide range of compounds, including xenobiotics, drugs, hormones and vitamins. It is noteworthy that these enzymes are highly polymorphic and, depending on the genetic makeup, an individual may have impaired enzymatic activity. Therefore, the identification of genetic variants in these genes could facilitate the implementation of pharmacogenetic studies and genetic predisposition to multifactorial diseases. We have established the frequencies of CYP2B6 (rs3745274; rs2279343) and CYP3A4 (rs2740574) alleles and genotypes in 209 healthy Malian subjects using TaqMan drug metabolism genotyping assays for allelic discrimination. Allele frequencies were 37% for CYP2B6 rs3745274; 38% for CYP2B6 rs2279343; and 75% for CYP3A4 rs2740574 respectively. Overall, the frequencies observed in Mali are statistically comparable to those reported across Africa except North Africa. The major haplotypes in CYP2B6 rs3745274 and CYP2B6 rs2279343 were represented by GA (60.24%) followed by TG (35.36%). We noted a strong linkage disequilibrium between CYP2B6 rs3745274 and CYP2B6 rs2279343 with D' = 0.91 and r2 = 0.9. The frequencies of the genotypic combinations were 43.5% (GT/AG), 37.3% (GG/AA) and 11.5% (TT/GG) in the combination of CYP2B6-rs3745274 and CYP2B6-rs2279343; 26.8% (GT/CC), 25.4%, (GT/CT), 17.2% and GG/CT in the combination CYP2B6-rs3745274-CYP3A4-rs2740574; 26.8% (AG/CC), 23.9% (AA/CC), 19.1% (AG/CT), and 11% (AA/CT) in the combination CYP2B6-rs2279343-CYP3A4-rs2740574, respectively. The most common triple genotype was GT/AG/CC with 24.9%, followed by GG/AA/CC with 23.9%, GT/AG/CT with 16.7%, and GG/AA/CT with 10%. Our results provide new insights into the distribution of these pharmacogenetically relevant genes in the Malian population. Moreover, these data will be useful for studies of individual genetic variability to drugs and genetic predisposition to diseases.
    Matched MeSH terms: Haplotypes/genetics*
  7. Hill C, Soares P, Mormina M, Macaulay V, Meehan W, Blackburn J, et al.
    Mol Biol Evol, 2006 Dec;23(12):2480-91.
    PMID: 16982817
    Studying the genetic history of the Orang Asli of Peninsular Malaysia can provide crucial clues to the peopling of Southeast Asia as a whole. We have analyzed mitochondrial DNA (mtDNAs) control-region and coding-region markers in 447 mtDNAs from the region, including 260 Orang Asli, representative of each of the traditional groupings, the Semang, the Senoi, and the Aboriginal Malays, allowing us to test hypotheses about their origins. All of the Orang Asli groups have undergone high levels of genetic drift, but phylogeographic traces nevertheless remain of the ancestry of their maternal lineages. The Semang have a deep ancestry within the Malay Peninsula, dating to the initial settlement from Africa >50,000 years ago. The Senoi appear to be a composite group, with approximately half of the maternal lineages tracing back to the ancestors of the Semang and about half to Indochina. This is in agreement with the suggestion that they represent the descendants of early Austroasiatic speaking agriculturalists, who brought both their language and their technology to the southern part of the peninsula approximately 4,000 years ago and coalesced with the indigenous population. The Aboriginal Malays are more diverse, and although they show some connections with island Southeast Asia, as expected, they also harbor haplogroups that are either novel or rare elsewhere. Contrary to expectations, complete mtDNA genome sequences from one of these, R9b, suggest an ancestry in Indochina around the time of the Last Glacial Maximum, followed by an early-Holocene dispersal through the Malay Peninsula into island Southeast Asia.
    Matched MeSH terms: Haplotypes/genetics
  8. Hazreen Nita MK, Kua BC, Bhassu S, Othman RY
    Mol Biol Rep, 2012 Apr;39(4):3785-90.
    PMID: 21755294 DOI: 10.1007/s11033-011-1155-x
    Infectious hypodermal and haematopoietic necrosis virus (IHHNV) has been detected widely in penaeid culture facilities in Asia and the Americas. IHHNV infection on sub-adult and postlarvae of the giant freshwater prawn, Macrobrachium rosenbergii which had caused up to 80% mortalities was first reported in Southeast Taiwan in 2006. In Malaysia, although, there has been no report on IHHNV infections in M. rosenbergii, preliminary work suggests that there is an urgent need to setup a screening protocol for IHHNV for both wild and cultured populations. In this study, polymerase chain reaction based screening was carried out on 30 randomly sampled berried wild M. rosenbergii before and after spawning. All samples did not showed any sign of IHHNV infection. However, the results showed that 20% of the samples were IHHNV positive. Sequence analysis of the amplified band using NCBI-BLAST showed that the putative IHHNV sequence had 98% nucleotide sequence (388 bp) identity with the IHHNV isolate AC-05-005 non-structural protein 1 gene and seven other IHHNV strains in the data bank further affirming the suggestion on the presence of IHHNV in wild freshwater prawn populations in Malaysia.
    Matched MeSH terms: Haplotypes/genetics
  9. Haerian BS, Lim KS, Tan CT, Raymond AA, Mohamed Z
    Pharmacogenomics, 2011 May;12(5):713-25.
    PMID: 21391884 DOI: 10.2217/pgs.10.212
    Several studies demonstrated a link between ABCB1 gene variants and the response to treatment in epilepsy, but the results have been inconclusive. Here, we performed the first haplotype meta-analysis to examine the association of haplotypes of ABCB1 common variants with the response to treatment in epilepsy.
    Matched MeSH terms: Haplotypes/genetics*
  10. Goh LL, Lim CW, Sim WC, Toh LX, Leong KP
    PLoS One, 2017;12(1):e0169233.
    PMID: 28046094 DOI: 10.1371/journal.pone.0169233
    BACKGROUND: Genetic determinants of drug response remain stable throughout life and offer great promise to patient-tailored drug therapy. The adoption of pharmacogenetic (PGx) testing in patient care requires accurate, cost effective and rapid genotyping with clear guidance on the use of the results. Hence, we evaluated a 32 SNPs panel for implementing PGx testing in clinical laboratories.

    METHODS: We designed a 32-SNP panel for PGx testing in clinical laboratories. The variants were selected using the clinical annotations of the Pharmacogenomics Knowledgebase (PharmGKB) and include polymorphisms of CYP2C9, CYP2C19, CYP2D6, CYP3A5 and VKORC1 genes. The CYP2D6 gene allele quantification was determined simultaneously with TaqMan copy number assays targeting intron 2 and exon 9 regions. The genotyping results showed high call rate accuracy according to concordance with genotypes identified by independent analyses on Sequenome massarray and droplet digital PCR. Furthermore, 506 genomic samples across three major ethnic groups of Singapore (Malay, Indian and Chinese) were analysed on our workflow.

    RESULTS: We found that 98% of our study subjects carry one or more CPIC actionable variants. The major alleles detected include CYP2C9*3, CYP2C19*2, CYP2D6*10, CYP2D6*36, CYP2D6*41, CYP3A5*3 and VKORC1*2. These translate into a high percentage of intermediate (IM) and poor metabolizer (PM) phenotypes for these genes in our population.

    CONCLUSION: Genotyping may be useful to identify patients who are prone to drug toxicity with standard doses of drug therapy in our population. The simplicity and robustness of this PGx panel is highly suitable for use in a clinical laboratory.

    Matched MeSH terms: Haplotypes/genetics
  11. Ghoussaini M, French JD, Michailidou K, Nord S, Beesley J, Canisus S, et al.
    Am J Hum Genet, 2016 Oct 06;99(4):903-911.
    PMID: 27640304 DOI: 10.1016/j.ajhg.2016.07.017
    Genome-wide association studies (GWASs) have revealed increased breast cancer risk associated with multiple genetic variants at 5p12. Here, we report the fine mapping of this locus using data from 104,660 subjects from 50 case-control studies in the Breast Cancer Association Consortium (BCAC). With data for 3,365 genotyped and imputed SNPs across a 1 Mb region (positions 44,394,495-45,364,167; NCBI build 37), we found evidence for at least three independent signals: the strongest signal, consisting of a single SNP rs10941679, was associated with risk of estrogen-receptor-positive (ER+) breast cancer (per-g allele OR ER+ = 1.15; 95% CI 1.13-1.18; p = 8.35 × 10-30). After adjustment for rs10941679, we detected signal 2, consisting of 38 SNPs more strongly associated with ER-negative (ER-) breast cancer (lead SNP rs6864776: per-a allele OR ER- = 1.10; 95% CI 1.05-1.14; p conditional = 1.44 × 10-12), and a single signal 3 SNP (rs200229088: per-t allele OR ER+ = 1.12; 95% CI 1.09-1.15; p conditional = 1.12 × 10-05). Expression quantitative trait locus analysis in normal breast tissues and breast tumors showed that the g (risk) allele of rs10941679 was associated with increased expression of FGF10 and MRPS30. Functional assays demonstrated that SNP rs10941679 maps to an enhancer element that physically interacts with the FGF10 and MRPS30 promoter regions in breast cancer cell lines. FGF10 is an oncogene that binds to FGFR2 and is overexpressed in ∼10% of human breast cancers, whereas MRPS30 plays a key role in apoptosis. These data suggest that the strongest signal of association at 5p12 is mediated through coordinated activation of FGF10 and MRPS30, two candidate genes for breast cancer pathogenesis.
    Matched MeSH terms: Haplotypes/genetics
  12. Furuumi H, Firdous N, Inoue T, Ohta H, Winichagoon P, Fucharoen S, et al.
    Hemoglobin, 1998 Mar;22(2):141-51.
    PMID: 9576331
    We have systematically analyzed beta-thalassemia genes using polymerase chain reaction-related techniques, dot-blot hybridization with oligonucleotide probes, allele specific-polymerase chain reaction, and sequencing of amplified DNA fragments from 41 unrelated patients, including 37 beta-thalassemia homozygotes, three with beta-thalassemia/Hb E, and one with beta-thalassemia/Hb S. Four different beta-thalassemia mutations were detected in 78 alleles. These are the IVS-I-5 (G-->C), codon 30 (AGG-->ACG) [also indicated as IVS-I (-1)], IVS-I-1 (G-->A), and codons 41/42 (-TTCT) mutations. The distribution of the beta-thalassemia mutations in the Maldives is 58 alleles (74.3%) with the IVS-I-5 (G-->C) mutation, 12 (15.4%) with the codon 30 (AGG-->ACG) mutation, seven (9%) with the IVS-I-1 (G-->A) mutation, and one with the codons 41/42 (-TTCT) mutation. The first three mutations account for 98.7% of the total number of beta-thalassemia chromosomes studied. These mutations are clustered in the region spanning 6 bp around the junction of exon 1 and the first intervening sequence of the beta-globin gene. These observations have significant implications for setting up a thalassemia prevention and control program in the Maldives. Analysis of haplotypes and frameworks of chromosomes bearing each beta-thalassemia mutation suggested that the origin and spread of these mutations were reflected by the historical record.
    Matched MeSH terms: Haplotypes/genetics
  13. Faber BW, Abdul Kadir K, Rodriguez-Garcia R, Remarque EJ, Saul FA, Vulliez-Le Normand B, et al.
    PLoS One, 2015;10(4):e0124400.
    PMID: 25881166 DOI: 10.1371/journal.pone.0124400
    Infection with Plasmodium knowlesi, a zoonotic primate malaria, is a growing human health problem in Southeast Asia. P. knowlesi is being used in malaria vaccine studies, and a number of proteins are being considered as candidate malaria vaccine antigens, including the Apical Membrane Antigen 1 (AMA1). In order to determine genetic diversity of the ama1 gene and to identify epitopes of AMA1 under strongest immune selection, the ama1 gene of 52 P. knowlesi isolates derived from human infections was sequenced. Sequence analysis of isolates from two geographically isolated regions in Sarawak showed that polymorphism in the protein is low compared to that of AMA1 of the major human malaria parasites, P. falciparum and P. vivax. Although the number of haplotypes was 27, the frequency of mutations at the majority of the polymorphic positions was low, and only six positions had a variance frequency higher than 10%. Only two positions had more than one alternative amino acid. Interestingly, three of the high-frequency polymorphic sites correspond to invariant sites in PfAMA1 or PvAMA1. Statistically significant differences in the quantity of three of the six high frequency mutations were observed between the two regions. These analyses suggest that the pkama1 gene is not under balancing selection, as observed for pfama1 and pvama1, and that the PkAMA1 protein is not a primary target for protective humoral immune responses in their reservoir macaque hosts, unlike PfAMA1 and PvAMA1 in humans. The low level of polymorphism justifies the development of a single allele PkAMA1-based vaccine.
    Matched MeSH terms: Haplotypes/genetics*
  14. Esa Y, Abdul Rahim KA
    Biomed Res Int, 2013;2013:170980.
    PMID: 24455674 DOI: 10.1155/2013/170980
    This study examines the population genetic structure of Tor tambroides, an important freshwater fish species in Malaysia, using fifteen polymorphic microsatellite loci and sequencing of 464 base pairs of the mitochondrial cytochrome c oxidase I (COI) gene. A total of 152 mahseer samples were collected from eight populations throughout the Malaysia river system. Microsatellites results found high levels of intrapopulation variations, but mitochondrial COI results found high levels of interpopulations differentiation. The possible reasons for their discrepancies might be the varying influence of genetic drift on each marker or the small sample sizes used in most of the populations. The Kelantan population showed very low levels of genetic variations using both mitochondrial and microsatellite analyses. Phylogenetic analysis of the COI gene found a unique haplotype (ER8∗), possibly representing a cryptic lineage of T. douronensis, from the Endau-Rompin population. Nevertheless, the inclusion of nuclear microsatellite analyses could not fully resolve the genetic identity of haplotype ER8∗ in the present study. Overall, the findings showed a serious need for more comprehensive and larger scale samplings, especially in remote river systems, in combination with molecular analyses using multiple markers, in order to discover more cryptic lineages or undescribed "genetic species" of mahseer.
    Matched MeSH terms: Haplotypes/genetics
  15. Drescher J, Blüthgen N, Feldhaar H
    Mol Ecol, 2007 Apr;16(7):1453-65.
    PMID: 17391269
    Invasive species are one of the main sources of the ongoing global loss of biodiversity. Invasive ants are known as particularly damaging invaders and their introductions are often accompanied by population-level behavioural and genetic changes that may contribute to their success. Anoplolepis gracilipes is an invasive ant that has just recently received increased attention due to its negative impact on native ecosystems. We examined the behaviour and population structure of A. gracilipes in Sabah, Malaysia. A total of 475 individuals from 24 colonies were genotyped with eight microsatellite markers. Intracolonial relatedness was high, ranging from 0.37 to 1 (mean +/- SD: 0.82 +/- 0.04), while intercolonial relatedness was low (0.0 +/- 0.02, range -0.5-0.76). We compared five distinct sampling regions in Sabah and Brunei. A three-level hierarchical F-analysis revealed high genetic differentiation among colonies within the same region, but low genetic differentiation within colonies or across regions. Overall levels of heterozygosity were unusually high (mean H(O) = 0.95, mean H(E) = 0.71) with two loci being entirely heterozygous, indicating an unusual reproductive system in this species. Bioassays revealed a negative correlation between relatedness and aggression, suggesting kinship as one factor facilitating supercolony formation in this species. Furthermore, we genotyped one individual per nest from Sabah (22 nests), Sarawak (one nest), Brunei (three nests) and the Philippines (two nests) using two mitochondrial DNA markers. We found six haplotypes, two of which included 82.1% of all sequences. Our study shows that the sampled area in Sabah consists of a mosaic of differently interrelated nests in different stages of colony establishment. While some of the sampled colonies may belong to large supercolonies, others are more likely to represent recently introduced or dispersed propagules that are just beginning to expand.
    Matched MeSH terms: Haplotypes/genetics
  16. Divis PCS, Duffy CW, Kadir KA, Singh B, Conway DJ
    Mol Ecol, 2018 02;27(4):860-870.
    PMID: 29292549 DOI: 10.1111/mec.14477
    Plasmodium knowlesi is a significant cause of human malaria transmitted as a zoonosis from macaque reservoir hosts in South-East Asia. Microsatellite genotyping has indicated that human infections in Malaysian Borneo are an admixture of two highly divergent sympatric parasite subpopulations that are, respectively, associated with long-tailed macaques (Cluster 1) and pig-tailed macaques (Cluster 2). Whole-genome sequences of clinical isolates subsequently confirmed the separate clusters, although fewer of the less common Cluster 2 type were sequenced. Here, to analyse population structure and genomic divergence in subpopulation samples of comparable depth, genome sequences were generated from 21 new clinical infections identified as Cluster 2 by microsatellite analysis, yielding a cumulative sample size for this subpopulation similar to that for Cluster 1. Profound heterogeneity in the level of intercluster divergence was distributed across the genome, with long contiguous chromosomal blocks having high or low divergence. Different mitochondrial genome clades were associated with the two major subpopulations, but limited exchange of haplotypes from one to the other was evident, as was also the case for the maternally inherited apicoplast genome. These findings indicate deep divergence of the two sympatric P. knowlesi subpopulations, with introgression likely to have occurred recently. There is no evidence yet of specific adaptation at any introgressed locus, but the recombinant mosaic types offer enhanced diversity on which selection may operate in a currently changing landscape and human environment. Loci responsible for maintaining genetic isolation of the sympatric subpopulations need to be identified in the chromosomal regions showing fixed differences.
    Matched MeSH terms: Haplotypes/genetics
  17. Deng L, Hoh BP, Lu D, Saw WY, Twee-Hee Ong R, Kasturiratne A, et al.
    Sci Rep, 2015 Sep 23;5:14375.
    PMID: 26395220 DOI: 10.1038/srep14375
    The Malay people are an important ethnic composition in Southeast Asia, but their genetic make-up and population structure remain poorly studied. Here we conducted a genome-wide study of four geographical Malay populations: Peninsular Malaysian Malay (PMM), Singaporean Malay (SGM), Indonesian Malay (IDM) and Sri Lankan Malay (SLM). All the four Malay populations showed substantial admixture with multiple ancestries. We identified four major ancestral components in Malay populations: Austronesian (17%-62%), Proto-Malay (15%-31%), East Asian (4%-16%) and South Asian (3%-34%). Approximately 34% of the genetic makeup of SLM is of South Asian ancestry, resulting in its distinct genetic pattern compared with the other three Malay populations. Besides, substantial differentiation was observed between the Malay populations from the north and the south, and between those from the west and the east. In summary, this study revealed that the genetic identity of the Malays comprises a mixed entity of multiple ancestries represented by Austronesian, Proto-Malay, East Asian and South Asian, with most of the admixture events estimated to have occurred 175 to 1,500 years ago, which in turn suggests that geographical isolation and independent admixture have significantly shaped the genetic architectures and the diversity of the Malay populations.
    Matched MeSH terms: Haplotypes/genetics
  18. Chua YA, Abdullah WZ, Yusof Z, Gan SH
    Biomed Res Int, 2014;2014:316310.
    PMID: 24790995 DOI: 10.1155/2014/316310
    The vitamin K epoxide reductase complex 1 gene (VKORC1) is commonly assessed to predict warfarin sensitivity. In this study, a new nested allele-specific multiplex polymerase chain reaction (PCR) method that can simultaneously identify single nucleotide polymorphisms (SNPs) at VKORC1 381, 861, 5808, and 9041 for haplotype analysis was developed and validated. Extracted DNA was amplified in the first PCR DNA, which was optimized by investigating the effects of varying the primer concentrations, annealing temperature, magnesium chloride concentration, enzyme concentration, and the amount of DNA template. The amplification products produced from the first round of PCR were used as templates for a second PCR amplification in which both mutant and wild-type primers were added in separate PCR tubes, followed by optimization in a similar manner. The final PCR products were resolved by agarose gel electrophoresis and further analysed by using a VKORC1 genealogic tree to infer patient haplotypes. Fifty patients were identified to have H1H1, one had H1H2, one had H1H7, 31 had either H1H7 or H1H9, one had H1H9, eight had H7H7, and one had H8H9 haplotypes. This is the first method that is able to infer VKORC1 haplotypes using only conventional PCR methods.
    Matched MeSH terms: Haplotypes/genetics*
  19. Chua VL, Smith BT, Burner RC, Rahman MA, Lakim M, Prawiradilaga DM, et al.
    Mol Phylogenet Evol, 2017 Aug;113:139-149.
    PMID: 28545973 DOI: 10.1016/j.ympev.2017.05.016
    The mountains of Borneo are well known for their high endemicity and historical role in preserving Southeast Asian rainforest biodiversity, but the diversification of populations inhabiting these mountains is poorly studied. Here we examine the genetic structure of 12 Bornean montane passerines by comparing complete mtDNA ND2 gene sequences of populations spanning the island. Maximum likelihood and Bayesian phylogenetic trees and haplotype networks are examined for common patterns that might signal important historical events or boundaries to dispersal. Morphological and ecological characteristics of each species are also examined using phylogenetic generalized least-squares (PGLS) for correlation with population structure. Populations in only four of the 12 species are subdivided into distinct clades or haplotype groups. Although this subdivision occurred at about the same time in each species (ca. 0.6-0.7Ma), the spatial positioning of the genetic break differs among the species. In two species, northeastern populations are genetically divergent from populations elsewhere on the island. In the other two species, populations in the main Bornean mountain chain, including the northeast, are distinct from those on two isolated peaks in northwestern Borneo. We suggest different historical forces played a role in shaping these two distributions, despite commonality in timing. PGLS analysis showed that only a single characteristic-hand-wing index-is correlated with population structure. Birds with longer wings, and hence potentially more dispersal power, have less population structure. To understand historical forces influencing montane population structure on Borneo, future studies must compare populations across the entirety of Sundaland.
    Matched MeSH terms: Haplotypes/genetics
  20. Chaisson MJP, Sanders AD, Zhao X, Malhotra A, Porubsky D, Rausch T, et al.
    Nat Commun, 2019 04 16;10(1):1784.
    PMID: 30992455 DOI: 10.1038/s41467-018-08148-z
    The incomplete identification of structural variants (SVs) from whole-genome sequencing data limits studies of human genetic diversity and disease association. Here, we apply a suite of long-read, short-read, strand-specific sequencing technologies, optical mapping, and variant discovery algorithms to comprehensively analyze three trios to define the full spectrum of human genetic variation in a haplotype-resolved manner. We identify 818,054 indel variants (<50 bp) and 27,622 SVs (≥50 bp) per genome. We also discover 156 inversions per genome and 58 of the inversions intersect with the critical regions of recurrent microdeletion and microduplication syndromes. Taken together, our SV callsets represent a three to sevenfold increase in SV detection compared to most standard high-throughput sequencing studies, including those from the 1000 Genomes Project. The methods and the dataset presented serve as a gold standard for the scientific community allowing us to make recommendations for maximizing structural variation sensitivity for future genome sequencing studies.
    Matched MeSH terms: Haplotypes/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links