Displaying publications 21 - 40 of 176 in total

Abstract:
Sort:
  1. Anis Jauharah M, Wan Rosli W, Daniel Robert S
    Sains Malaysiana, 2014;43:45-52.
    Various types of natural fibre-rich ingredients are added into bakery-based products to improve their fibre content for health promotional purposes. However, most of these products are frequently added with imported dietary fibre ingredients. The aim of this study was to develop bakery products incorporated with young corn powder (YCP) and to evaluate the effects on physicochemical properties and sensory acceptabilities. Dried young corn was used to substitute wheat flour in biscuit and muffin formulations at different levels (0, 10, 20 and 30%). The effects of YCP incorporation on proximate compositions, physical characteristics, texture profile and sensory evaluation of both bakery products were investigated. The present results showed that YCP had significantly increased protein and total dietary fibre contents of both biscuit and muffin. Hardness attribute of both products increased in line with the level of YCP addition. Interestingly, biscuit and muffin containing 10% YCP received better score than the control and other formulations for most of the sensorial attributes judged. In conclusion, YCP can be potentially be used as an alternative functional ingredient for partial replacement of wheat flour in formulating biscuit and muffin because of its ability to improve the nutritional quality without jeopardizing sensorial palatability.
    Matched MeSH terms: Hardness
  2. Chang BP, Hazizan Md Akil, Ramdziah bt Md Nasir
    Sains Malaysiana, 2015;44:819-825.
    As of today, ultra-high molecular weight polyethylene (UHMWPE) is a thermoplastic material normally used as bearing
    components for human joint replacements. However, formation of wear debris from UHMWPE after certain service
    periods may cause adverse effects which remain as unresolved issues. In this study, mechanical and dry sliding wear
    properties of UHMWPE reinforced with different loading of talc particles were investigated. The wear test was carried
    out using Ducom TR-20 pin-on-disc tester at different pressure velocity (pv) factors under dry sliding conditions. The
    worn surfaces and transfer films of pure UHMWPE and talc/UHMWPE composites were observed under scanning electron
    microscope (SEM). The experimental results showed that the microhardness increased with the increase of talc loadings
    in UHMWPE. The 20 wt. % talc/UHMWPE composites showed a 17% increment in microhardness as compared with pure
    UHMWPE. The dry sliding wear behaviour of UHMWPE was also improved upon the reinforcement of talc. The wear rate
    of UHMWPE decreased after incorporation of talc particles. The coefficient of friction (COF) increased slightly under low
    pv conditions. At high pv conditions, the COF decreased in values with increasing talc loadings. The improvement in
    wear behaviour may be attributed to the increase in load-carrying capacity and surface hardness of the talc/UHMWPE
    composites. SEM micrographs on worn surfaces showed that plastic deformation and grooving wear were dominant for
    UHMWPE. The plastic deformation and grooving wear were reduced upon the reinforcement of talc particles. The talc/
    UHMWPE composites produced smoother and uniform transfer films as compared to pure UHMWPE.
    Matched MeSH terms: Hardness
  3. Hazwani Syaza Ahmad, Hanafi Ismail, Azura Abd Rashid
    Sains Malaysiana, 2015;44:835-842.
    Epoxidized natural rubber (ENR-50) has been used as a compatibilizer for natural rubber-recycled acrylonitrile-butadiene
    rubber (NR/NBRr) blends, vulcanized by sulfur. NBR gloves have excellent resistance to punctures, tear and many types
    of chemicals, while NR has good physical and mechanical properties. Incorporation of ENR-50 into the rubber blends
    has improved processability, stiffness, resilience and excellent oil resistance. NR/NBRr blends were prepared by two-roll
    mill with five different compositions with the ENR-50 content fixed at 10 phr. Cure characteristics, mechanical properties
    and morphology (SEM) studies were performed to determine the compatibility of NR/NBRr blends in the presence of ENR-
    50. The cure characteristics showed that NR/NBRr blends with the presence of ENR-50 have lower scorch time (ts2) and
    cure time (t90) than NR/NBRr blends without ENR-50. However, the NR/NBRr blends with ENR-50 exhibited higher minimum
    torque (ML
    ) and maximum torque (MH) which indicated difficult processability of the blends after compatibilization.
    Incorporation of ENR-50 into NR/NBRr blends improved all the tensile properties (tensile strength, tensile modulus and
    elongation at break) compared with NR/NBRr blends without ENR-50. The improvement in hardness upon compatibilization
    is due to an increase in crosslink density. Scanning electron microscopy (SEM images) of the fracture surfaces indicates
    that, with the addition of ENR-50 in NR/NBRr blends, better adhesion between NR and NBRr was obtained, thus improving
    the compatibility of NR/NBRr blends.
    Matched MeSH terms: Hardness
  4. Zakir H, Fathilah A, Bakri M, Kitagawa J
    Sains Malaysiana, 2015;44:593-597.
    The fundamental pattern of chewing induced by the network of neurons called central pattern generator has been reported
    to be modified by the information arising from the various oro-facial sensory receptors including muscle spindles of jaw
    closing muscles. The cell bodies of primary afferent neurons from these muscle spindles lie in mesencephalic trigeminal
    nucleus (MTN) in the brainstem. The aim of the study was to understand whether muscle spindles from jaw-closing
    muscles play any role in hard food chewing. Single neuronal discharge of muscle spindle afferents was recorded from the
    MTN simultaneous with jaw-movement and electromyograpic (EMG) activities of the left masseter (jaw-closing) muscle
    during chewing soft and hard foods (apple and pellet) in awake rabbits. Ten consecutive chewing cycles were taken for
    analysis. Discharge of nineteen muscle spindles from seven rabbits was successfully recorded. Muscle-spindle discharge
    was significantly higher during the closing phase of jaw-movement for the hard food chewing than for the soft food. The
    jaw-closing muscle EMG activity was significantly higher during hard food chewing compared to soft food. The spindle
    discharge was higher when the masseter muscle activity was greater for chewing hard food. Significant positive (r=0.822,
    p=<0.001) correlation was found between the difference of muscle activity between apple and pellet and the difference
    of spindle discharge between apple and pellet. Above findings suggest that the increase of spindle discharge during
    hard food chewing may play a role for facilitating jaw-closing muscle activities and thereby provides servo-assistance
    to jaw-closing muscles to compensate the hardness of food.
    Matched MeSH terms: Hardness
  5. Khairiah Badri, Amamer Musbah Redwan
    Fire-retarding polyurethane (PU) composite was produced by adding 2,4-ditert-butylphenyl phosphite (FR) to palm-based monoester resin with loading percentage of 0, 2, 4, and 6 wt%. The Shore D hardness index increased marginally with increasing FR content. However, the impact and flexural strengths decreased with increasing FR loading attributed to the weak interfacial bonding between FR and PU matrix. The fire test indicated lowering of burning rate (from 5.30 mm.s-1 to 2.80 mm.s-1) as the loading percentage of FR increased. The combustion enthalpy of the composites also decreased with higher loading percentage of FR.
    Matched MeSH terms: Hardness
  6. Marina AM, Nurhanan AR, Wan Rosli WI, Nurul Ain O
    Sains Malaysiana, 2016;45:1105-1111.
    The effect of addition of avocado (Persea americana) puree on the physical and microstructure of butter cake was studied.
    Butter cakes were made by replacing butter with 10, 30 and 50% of avocado puree. Physical properties including batter
    specific gravity, volume, colour and image analysis of cellular structure of the crumb were analyzed. Texture profile
    analysis was determined using texture analyzer. The results showed that with the increased amount of avocado puree,
    the batter specific gravity increased while volume of the cakes reduced. The texture profile analysis showed that the cakes
    became harder as the amount of avocado puree increased, while cohesiveness was not affected. The cellular structure of
    the crumb exhibited a decrease in the number of air cells while the average cell size increased with addition of avocado
    puree. The colour analysis showed that the cake crumb became darker as the aavocado puree was increased.
    Matched MeSH terms: Hardness
  7. Nasiman Sapari, Hisyam Jusoh, Raja Zainariah Raja Azie
    Sains Malaysiana, 2011;40:1179-1186.
    Groundwater in fractured metasedimentary rock in Malaysia is a potential source of water for drinking and industrial uses. Industries including agricultural processing, mineral water bottling, manufacturing and golf courses pumped the water from the underlying fractured rocks. Fifty eight tubewells belong to private companies operating in various places in West Coast of Peninsular Malaysia were evaluated for their yield and quality of water. Rotary percussion methods were used for the drilling to a maximum depth of 200 m. The productivity of the wells and the characteristics of the aquifer were evaluated by pumping test using both the constant discharge rate and steps drawdown methods. The average yield of the wells at allowable drawdown of 40 m was found to be 416 m3 per day. Results from water quality analysis indicated that the water was fresh with an average total dissolved solids (TDS) concentration of 101 to 150 mg/L. The hardness of the water varies from as low as 13 mg/L to a maximum of 353 mg/L. On the average, the water was moderately hard with the average hardness value of 80 mg/L. The water facies of the groundwater was found to be of calcium-sodium-bicarbonate water.
    Matched MeSH terms: Hardness
  8. Nor Hayati Muhammad, Ibrahim Abdullah, Dahlan Mohd
    Sains Malaysiana, 2011;40:1179-1186.
    The effects of HVA-2 on radiation-induced cross-linkings in 60/40 natural rubber/ linear low density polyethylene (NR/LLDPE) blends was studied. NR/LLDPE was irradiated by using a 3.0 MeV electron beam machine with doses ranging from 0 to 250 kGy. Results showed that under the irradiation employed, the blends NR/LLDPE were cross-linked by the electron beam irradiation. The presence of HVA-2 in the blends caused the optimum dose to decrease and the blends to exhibit higher tensile properties. Further, within the dose range studied, the degradation caused by electron beam irradiation was found to be minimal. The optimized processing conditions were 120oC, 50 rpm rotor speed and 13 min processing time. The gel content, tensile strength, elongation at break, hardness and impact test studies were used to follow the irradiation-induced cross-linkings in the blend. For blends of 60/40 NR/LLDPE with 2.0 phr HVA-2, the optimum tensile strength and dose, were 19 MPa and 100 kGy, respectively. Blends of 60/40 NR/LLDPE without HVA-2, the optimum tensile strength and dose were 17.2 MPa and 200 kGy, respectively.
    Matched MeSH terms: Hardness
  9. Sulaiman M, Cbe Haron C, Ghani J, Kasim M
    Sains Malaysiana, 2014;43:111-116.
    In this work, the Sandvik uncoated carbide insert, CNGG 120408-SGF-H13A was used as a cutting tool in high-speed turning of titanium alloy Ti-6A1-4V EH (extra-low interstitial) with hardness of 32 HRC. Wear is one of the problems that cannot be avoided in machining process. Therefore, the objective of this paper was to investigate tool-wear behavior of various cutting-speed values (high-speed range) on the tool life of the cutting tools, especially in finishing titanium alloy. The experiments were performed under flooded coolant condition using water-based mineral-oil. The cutting speeds employed were 120, 170 and 220 mlmin. The feed rate was constant at 02 mm/rev and the depth of cut was 0.4 mm. Based on the results, the highest cutting speed of 220 m/min caused the highest wear rate. By linking the machine operations and the tool life curves obtained using flank wear data, the wear behavior of uncoated carbide was described.
    Matched MeSH terms: Hardness
  10. Mou Y, Yingfeng-Meng, Gao L, Lin H, Yufei-Li
    Sains Malaysiana, 2014;43:81-87.
    It is well-known that the characteristics of hardness and drillability are influenced by microstructure of rock. In this study, rock properties were analyzed on grain size and grain content. Coarse-grain and fine-grain sandstones were tested under successive indentation condition. Eighteen groups of sandstone and shale were employed for the drillability test. Indentation tests results showed that grain size influenced the low point of residual hardness, the crushing depth and volume and grain content influenced the peak point of hardness. The drillability values of shale increased with increasing contents of clay and quartz. Meanwhile, drillability values of sandstone increased with increasing content of quartz, but decreased with increasing content of clay. Therefore, these preliminary studies show great potential applications for selecting suitable bit type and formulating drilling program as a function of rock microstructure and crushing rock method for bit in the oil drilling.
    Matched MeSH terms: Hardness
  11. Yanliang shang, Shouji du, Honghong gao, Tongyin han
    Sains Malaysiana, 2017;46:2241-2250.
    Mineral composition of rock has a very important influence on the physical and mechanical properties of tunnel surrounding rock. Take Dangjianshan tunnel in cold regions for example, the rock specimens in different parts of tunnel were taken to carry out the detection test of mineral composition. By the detail qualitative and quantitative analysis, the relationship between mineral composition and surrounding rock engineering properties was explored. First of all, the composition and content of minerals contained in in the rock specimens were detected by X ray fluorescence spectrometer and X ray powder diffraction. The detection results show that rock of tunnel contains high hardness minerals such as quartz and feldspar which were proven by initial engineering geological investigation report, in addition, it also contains several kinds of low hardness minerals including inclined chlorite and illite which may exhibit large deformation characteristic of soft rock after the tunnel excavation in case of meeting water and weathering conditions. The total content of inclined chlorite and illite accounted for a considerable component in main tunnel, inclined shaft and parallel pilot respectively and the influence on surrounding rock engineering properties cannot be ignored. Therefore, mineral composition detection must be paid attention to after tunnel excavation. Secondly, the effects of mineral composition on surrounding rock were analyzed in aspects of rock strength, weathering resistance, water softening property and excavation deformation through comparing the rock samples in different parts of tunnel. The comparative results showed that when the mineral contents is high with high hardness and poor hydrophilicity, tunnel surrounding rock plays a better performance of physical and mechanical properties, vice versa. Finally, according to the specific geological and construction parameters of the tunnel, the correlation analysis was studied about the vault settlement after tunnel excavation and the hydrophilicity mineral content in main cave. The logarithmic relationship between them was found and the correlation coefficient was 0.98. It can provide a useful reference for the settlement prediction of Dangjinshan tunnel construction.
    Matched MeSH terms: Hardness
  12. M.O.H. Amuda, T.A. Olaniyan, L.O. Osoba, E.T. Akinlabi
    Sains Malaysiana, 2017;46:743-753.
    The mechanical properties of Dual Phase Steel (DPS)-duplex structure-produced by quenching in pre-heated bitumen have been investigated. Medium carbon steels intercritically heated at different temperatures and holding times were quenched in hot bitumen. Optical and scanning electron microscopy characterisation of the duplex structure showed extensive network of fibrous martensite in a ferritic matrix with occasional presence of polygonal martensite. The duplex phase structure exhibited continuous yielding dynamics, improving the tensile and hardness values by about 42 and 35%, respectively, relative to the normalised structure. But, the elongation and impact values decreased by about 42 and 50%, respectively, when compared to the normalised structure. These values are similar to those obtained in duplex structure produced using conventional oil quenching. The tensile fractured surface showed transition between a predominantly cleavage mode in the lower annealing temperature to a mixed mode in the upper bound of the annealing temperature. These findings suggest that pre-heated bitumen can be exploited for the production of DPSs.
    Matched MeSH terms: Hardness
  13. Yanliang Shang, Shouji Du, Biao Shao, Tongyin Han
    Sains Malaysiana, 2017;46:2091-2099.
    A large number of shallow buried tunnels are built in the city nowadays and the special strata such as large upper-soft and lower-hard ground often encountered. Deformation control of strata is the focus issue related to the construction safety. Based on Dalian metro Hing Street station with the classical geological condition of upper-soft and lower-hard ground, this paper fully used a combined control method including six different support measures to control the deformation of surrounding rock. 3D finite element model was setup to analyze the construction effect of combined control measures and the monitoring in-site was carried out to verify the deformation control effect of combined control method. It shows that the maximum surface subsidence value is gradually reduced with the support measures gradually increasing. In the case of various supports the maximum sedimentation value is 2.67 cm, which is 42. 1% lower than that of not using control method and the control effect is obvious. In addition, it can be seen that the two-layer initial support and additional large arch foot have the best effect on controlling the ground surface settlement with reduction of 11.7% and 20.2%, respectively. The research results can provide practical experience for the construction of such tunnels, and guide the design and construction of the tunnel in the future.
    Matched MeSH terms: Hardness
  14. Akbari S, Mahmood SM, Ghaedi H, Al-Hajri S
    Polymers (Basel), 2019 Jun 14;11(6).
    PMID: 31207965 DOI: 10.3390/polym11061046
    Copolymers of acrylamide with the sodium salt of 2-acrylamido-2-methylpropane sulfonic acid-known as sulfonated polyacrylamide polymers-had been shown to produce very promising results in the enhancement of oil recovery, particularly in polymer flooding. The aim of this work is to develop an empirical model through the use of a design of experiments (DOE) approach for bulk viscosity of these copolymers as a function of polymer characteristics (i.e., sulfonation degree and molecular weight), oil reservoir conditions (i.e., temperature, formation brine salinity and hardness) and field operational variables (i.e., polymer concentration, shear rate and aging time). The data required for the non-linear regression analysis were generated from 120 planned experimental runs, which had used the Box-Behnken construct from the typical Response Surface Methodology (RSM) design. The data were collected during rheological experiments and the model that was constructed had been proven to be acceptable with the Adjusted R-Squared value of 0.9624. Apart from showing the polymer concentration as being the most important factor in the determination of polymer solution viscosity, the evaluation of the model terms as well as the Sobol sensitivity analysis had also shown a considerable interaction between the process parameters. As such, the proposed viscosity model can be suitably applied to the optimization of the polymer solution properties for the polymer flooding process and the prediction of the rheological data required for polymer flood simulators.
    Matched MeSH terms: Hardness
  15. Ibrahim F, Mohan D, Sajab MS, Bakarudin SB, Kaco H
    Polymers (Basel), 2019 Sep 23;11(10).
    PMID: 31547544 DOI: 10.3390/polym11101544
    In this study, lignin has been extracted from oil palm empty fruit bunch (EFB) fibers via an organosolv process. The organosolv lignin obtained was defined by the presence of hydroxyl-containing molecules, such as guaiacyl and syringyl, and by the presence of phenolic molecules in lignin. Subsequently, the extracted organosolv lignin and graphene nanoplatelets (GNP) were utilized as filler and reinforcement in photo-curable polyurethane (PU), which is used in stereolithography 3D printing. The compatibility as well as the characteristic and structural changes of the composite were identified through the mechanical properties of the 3D-printed composites. Furthermore, the tensile strength of the composited lignin and graphene shows significant improvement as high as 27%. The hardness of the photo-curable PU composites measured by nanoindentation exhibited an enormous improvement for 0.6% of lignin-graphene at 92.49 MPa with 238% increment when compared with unmodified PU.
    Matched MeSH terms: Hardness
  16. Akbari S, Mahmood SM, Tan IM, Ling OL, Ghaedi H
    Polymers (Basel), 2017 Oct 04;9(10).
    PMID: 30965788 DOI: 10.3390/polym9100480
    The viscosity of four new polymers was investigated for the effect of aging at high temperature, with varying degrees of salinity and hardness. The four sulfonated based polyacrylamide co-polymers were FLOCOMB C7035; AN132 VHM; SUPERPUSHER SAV55; and THERMOASSOCIATIF copolymers. All polymer samples were aged at 80 °C for varying times (from zero to at least 90 days) with and without isobutyl alcohol (IBA) as an antioxidant. To see the effect of divalent ions on the polymer solution viscosity, parallel experiments were performed in a mixture of CaCl₂-NaCl of the same ionic strength as 5 wt % NaCl. The polymers without IBA showed severe viscosity reduction after aging for 90 days in both types of preparation (5 wt % NaCl or CaCl₂-NaCl). In the presence of IBA, viscosity was increased when aging time was increased for 5 wt % NaCl. In CaCl₂-NaCl, on the other hand, a viscosity reduction was observed as aging time was increased. This behavior was observed for all polymers except AN132 VHM.
    Matched MeSH terms: Hardness
  17. Akbari S, Mahmood SM, Tan IM, Ghaedi H, Ling OL
    Polymers (Basel), 2017 Nov 27;9(12).
    PMID: 30965947 DOI: 10.3390/polym9120647
    This research aims to test four new polymers for their stability under high salinity/high hardness conditions for their possible use in polymer flooding to improve oil recovery from hydrocarbon reservoirs. The four sulfonated based polyacrylamide co-polymers were FLOCOMB C7035; SUPERPUSHER SAV55; THERMOASSOCIATIF; and AN132 VHM which are basically sulfonated polyacrylamide copolymers of AM (acrylamide) with AMPS (2-Acrylamido-2-Methylpropane Sulfonate). AN132 VHM has a molecular weight of 9⁻11 million Daltons with 32 mol % degree of sulfonation. SUPERPUSHER SAV55 mainly has about 35 mol % sulfonation degree and a molecular weight of 9⁻11 million Daltons. FLOCOMB C7035, in addition, has undergone post-hydrolysis step to increase polydispersity and molecular weight above 18 million Daltons but it has a sulfonation degree much lower than 32 mol %. THERMOASSOCIATIF has a molecular weight lower than 12 million Daltons and a medium sulfonation degree of around 32 mol %, and also contains LCST (lower critical solution temperature) type block, which is responsible for its thermoassociative characteristics. This paper discusses the rheological behavior of these polymers in aqueous solutions (100⁻4500 ppm) with NaCl (0.1⁻10 wt %) measured at 25 °C. The effect of hardness was investigated by preparing a CaCl₂-NaCl solution of same ionic strength as the 5 wt % of NaCl. In summary, it can be concluded that the rheological behavior of the newly modified co-polymers was in general agreement to the existing polymers, except that THERMOASSOCIATIF polymers showed unique behavior, which could possibly make them a better candidate for enhanced oil recovery (EOR) application in high salinity conditions. The other three polymers, on the other hand, are better candidates for EOR applications in reservoirs containing high divalent ions. These results are expected to be helpful in selecting and screening the polymers for an EOR application.
    Matched MeSH terms: Hardness
  18. Arumugam S, Kandasamy J, Md Shah AU, Hameed Sultan MT, Safri SNA, Abdul Majid MS, et al.
    Polymers (Basel), 2020 Jul 06;12(7).
    PMID: 32640502 DOI: 10.3390/polym12071501
    This study aims to explore the mechanical properties of hybrid glass fiber (GF)/sisal fiber (SF)/chitosan (CTS) composite material for orthopedic long bone plate applications. The GF/SF/CTS hybrid composite possesses a unique sandwich structure and comprises GF/CTS/epoxy as the external layers and SF/CTS/epoxy as the inner layers. The composite plate resembles the human bone structure (spongy internal cancellous matrix and rigid external cortical). The mechanical properties of the prepared hybrid sandwich composites samples were evaluated using tensile, flexural, micro hardness, and compression tests. The scanning electron microscopic (SEM) images were studied to analyze the failure mechanism of these composite samples. Besides, contact angle (CA) and water absorption tests were conducted using the sessile drop method to examine the wettability properties of the SF/CTS/epoxy and GF/SF/CTS/epoxy composites. Additionally, the porosity of the GF/SF/CTS composite scaffold samples were determined by using the ethanol infiltration method. The mechanical test results show that the GF/SF/CTS hybrid composites exhibit the bending strength of 343 MPa, ultimate tensile strength of 146 MPa, and compressive strength of 380 MPa with higher Young's modulus in the bending tests (21.56 GPa) compared to the tensile (6646 MPa) and compressive modulus (2046 MPa). Wettability study results reveal that the GF/SF/CTS composite scaffolds were hydrophobic (CA = 92.41° ± 1.71°) with less water absorption of 3.436% compared to the SF/CTS composites (6.953%). The SF/CTS composites show a hydrophilic character (CA = 54.28° ± 3.06°). The experimental tests prove that the GF/SF/CTS hybrid composite can be used for orthopedic bone fracture plate applications in future.
    Matched MeSH terms: Hardness
  19. Mudri NH, Abdullah LC, Aung MM, Salleh MZ, Awang Biak DR, Rayung M
    Polymers (Basel), 2020 Jul 03;12(7).
    PMID: 32635384 DOI: 10.3390/polym12071494
    Crude jatropha oil (JO) was modified to form jatropha oil-based polyol (JOL) via two steps in a chemical reaction known as epoxidation and hydroxylation. JOL was then reacted with isocyanates to produce JO-based polyurethane resin. In this study, two types of isocyanates, 2,4-toluene diisocyanate (2,4-TDI) and isophorone diisocyanate (IPDI) were introduced to produce JPUA-TDI and JPUA-IPDI respectively. 2,4-TDI is categorised as an aromatic isocyanate whilst IPDI is known as a cycloaliphatic isocyanate. Both JPUA-TDI and JPUA-IPDI were then end-capped by the acrylate functional group of 2-hydroxyethyl methacrylate (HEMA). The effects of that isocyanate structure were investigated for their physico, chemical and thermal properties. The changes of the functional groups during each synthesis step were monitored by FTIR analysis. The appearance of urethane peaks was observed at 1532 cm-1, 1718 cm-1 and 3369 cm-1 while acrylate peaks were detected at 815 cm-1 and 1663 cm-1 indicating that JPUA was successfully synthesised. It was found that the molar mass of JPUA-TDI was doubled compared to JPUA-IPDI. Each resin showed a similar degradation pattern analysed by thermal gravimetric analysis (TGA). For the mechanical properties, the JPUA-IPDI-based coating formulation exhibited a higher hardness value but poor adhesion compared to the JPUA-TDI-based coating formulation. Both types of jatropha-based polyurethane acrylate may potentially be used in an ultraviolet (UV) curing system specifically for clear coat surface applications to replace dependency on petroleum-based chemicals.
    Matched MeSH terms: Hardness
  20. Waheed Z, van Mil HG, Syed Hussein MA, Jumin R, Golam Ahad B, Hoeksema BW
    PLoS One, 2015;10(12):e0146006.
    PMID: 26719987 DOI: 10.1371/journal.pone.0146006
    The coral reefs at the northernmost tip of Sabah, Borneo will be established under a marine protected area: the Tun Mustapha Park (TMP) by the end of 2015. This area is a passage where the Sulu Sea meets the South China Sea and it is situated at the border of the area of maximum marine biodiversity, the Coral Triangle. The TMP includes fringing and patch reefs established on a relatively shallow sea floor. Surveys were carried out to examine features of the coral reefs in terms of scleractinian species richness, and benthic reef assemblages following the Reef Check substrate categories, with emphasis on hard coral cover. Variation in scleractinian diversity was based on the species composition of coral families Fungiidae (n = 39), Agariciidae (n = 30) and Euphylliidae (n = 15). The number of coral species was highest at reefs with a larger depth gradient i.e. at the periphery of the study area and in the deep South Banggi Channel. Average live hard coral cover across the sites was 49%. Only 7% of the examined reefs had > 75% hard coral cover, while the majority of the reef sites were rated fair (51%) and good (38%). Sites with low coral cover and high rubble fragments are evidence of blast fishing, although the observed damage appeared old. Depth was a dominant factor in influencing the coral species composition and benthic reef communities in the TMP. Besides filling in the information gaps regarding species richness and benthic cover for reef areas that were previously without any data, the results of this study together with information that is already available on the coral reefs of TMP will be used to make informed decisions on zoning plans for conservation priorities in the proposed park.
    Matched MeSH terms: Hardness
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links