Displaying publications 21 - 40 of 70 in total

Abstract:
Sort:
  1. Murty OP
    Am J Forensic Med Pathol, 2008 Sep;29(3):245-8.
    PMID: 18725781 DOI: 10.1097/PAF.0b013e318183d55f
    Giant cell myocarditis (GCM) is a rare but fatal disease of idiopathic origin. It results in focal necrosis of myocardium. This is a case report of middle aged Malaysian Indian female who died due to cardiac tamponade due to rupture myocardium and tear in the root of aorta. On naked eye examination, it simply resembled as recent as well as old fibrotic areas of myocardial infarction. She was clinically diagnosed as a case of obstructive cardiomyopathy with atrioventricular block, and was on pace maker. There was subendocardial fibrosis and left ventricular transmural infarction in the left ventricle. On histopathology, this was diagnosed as GCM, there were widespread areas of inflammatory cellular infiltration within the myocardium with multinucleated giant cells and granulomas interspersed with lymphocytes. Microscopic field showed up to 10 multinucleated giant cells. In this case, there were focal areas at multiple locations and caused uneven thickness in the left ventricle wall. Idiopathic GCM is very rare and causation of hemopericardium is the unique feature of this case. In this case the direct link of GCM with aortitis and rupture of left ventricle wall resulting in hemopericardium is shown. This case is documented through macroscopic as well as microscopic photographs in H&E, Ziel-Nelson, and GMS staining.
    Matched MeSH terms: Heart Ventricles/injuries; Heart Ventricles/pathology
  2. Khor KH, Campbell FE, Owen H, Shiels IA, Mills PC
    Vet J, 2015 Feb;203(2):161-8.
    PMID: 25573453 DOI: 10.1016/j.tvjl.2014.11.018
    The histological features of feline hypertrophic cardiomyopathy (HCM) have been well documented, but there are no reports describing the histological features in mild pre-clinical disease, since cats are rarely screened for the disease in the early stages before clinical signs are apparent. Histological changes at the early stage of the disease in pre-clinical cats could contribute to an improved understanding of disease aetiology or progression. The aim of this study was to evaluate the histological features of HCM in the left ventricular (LV) myocardium of cats diagnosed with pre-clinical HCM. Clinically healthy cats with normal (n = 11) and pre-clinical HCM (n = 6) were identified on the basis of echocardiography; LV free wall dimensions (LVFWd) and/or interventricular septal wall (IVSd) dimensions during diastole of 6-7 mm were defined as HCM, while equivalent dimensions <5.5 mm were defined as normal. LV myocardial sections were assessed and collagen content and inflammatory cell infiltrates were quantified objectively. Multifocal areas of inflammatory cell infiltration, predominantly lymphocytes, were observed frequently in the left myocardium of cats with pre-clinical HCM. Tissue from cats with pre-clinical HCM also had a higher number of neutrophils and a greater collagen content than the myocardium of normal cats. The myocardium variably demonstrated other features characteristic of HCM, including arteriolar mural hypertrophy and interstitial fibrosis and, to a lesser extent, myocardial fibre disarray and cardiomyocyte hypertrophy. These results suggest that an inflammatory process could contribute to increased collagen content and the myocardial fibrosis known to be associated with HCM.
    Matched MeSH terms: Heart Ventricles/physiopathology*
  3. Piccini JP, Stromberg K, Jackson KP, Kowal RC, Duray GZ, El-Chami MF, et al.
    Europace, 2019 Nov 01;21(11):1686-1693.
    PMID: 31681964 DOI: 10.1093/europace/euz230
    AIMS: Patient selection is a key component of securing optimal patient outcomes with leadless pacing. We sought to describe and compare patient characteristics and outcomes of Micra patients with and without a primary pacing indication associated with atrial fibrillation (AF) in the Micra IDE trial.

    METHODS AND RESULTS: The primary outcome (risk of cardiac failure, pacemaker syndrome, or syncope related to the Micra system or procedure) was compared between successfully implanted patients from the Micra IDE trial with a primary pacing indication associated with AF or history of AF (AF group) and those without (non-AF group). Among 720 patients successfully implanted with Micra, 228 (31.7%) were in the non-AF group. Reasons for selecting VVI pacing in non-AF patients included an expectation for infrequent pacing (66.2%) and advanced age (27.2%). More patients in the non-AF group had a condition that precluded the use of a transvenous pacemaker (9.6% vs. 4.7%, P = 0.013). Atrial fibrillation patients programmed to VVI received significantly more ventricular pacing compared to non-AF patients (median 67.8% vs. 12.6%; P 

    Matched MeSH terms: Heart Ventricles/physiopathology*
  4. Yee R, Gadler F, Hussin A, Bin Omar R, Khaykin Y, Verma A, et al.
    Heart Rhythm, 2014 Jul;11(7):1150-5.
    PMID: 24801899 DOI: 10.1016/j.hrthm.2014.04.020
    Left ventricular (LV) lead implantation for cardiac resynchronization therapy (CRT) is associated with lead dislodgement rates ranging from 3% to 10%, and some implant approaches to prevent dislodgement may contribute to suboptimal CRT response. We report our early human experience with an LV lead with a side helix for active fixation to the coronary vein wall.
    Matched MeSH terms: Heart Ventricles/physiopathology
  5. Ram SP, Malik AS
    Med J Malaysia, 1994 Mar;49(1):96-9.
    PMID: 8058000
    Three children with cardiac tumors are described: a 12-year-old female child who had left atrial myxoma, and two males having rhabdomyoma of the right ventricle associated with tuberous sclerosis. The child with left atrial myxoma was symptomatic and the tumour was subsequently excised. The other two children with rhabdomyoma were managed conservatively.
    Matched MeSH terms: Heart Ventricles
  6. Subramaniam K, Siew SF, Mahmood MS
    Malays J Pathol, 2019 Apr;41(1):51-54.
    PMID: 31025638
    Spontaneous coronary artery dissection is a rare event and commonly associated with pregnancy and female gender. This condition can reduce or completely obstruct the blood flow to the heart, causing a myocardial ischaemia, abnormalities in heart rhythm or sudden death. We present a case of a 28-year-old Indian male with no previous medical illness who complained sudden onset of chest pain prior to his death. Autopsy revealed a left anterior descending coronary artery dissection associated with plaque rupture. The anterior wall of left ventricle showed contraction band necrosis. There was also atheroma present in the right coronary artery which was insignificant. Histologically, dissection was associated with atherosclerosis. There was no evidence of vasculitis. The cause of death was given as coronary artery dissection due to coronary artery atherosclerosis.
    Matched MeSH terms: Heart Ventricles
  7. Zak J, Vives V, Szumska D, Vernet A, Schneider JE, Miller P, et al.
    Cell Death Differ, 2016 Dec;23(12):1973-1984.
    PMID: 27447114 DOI: 10.1038/cdd.2016.76
    Chromosomal abnormalities are implicated in a substantial number of human developmental syndromes, but for many such disorders little is known about the causative genes. The recently described 1q41q42 microdeletion syndrome is characterized by characteristic dysmorphic features, intellectual disability and brain morphological abnormalities, but the precise genetic basis for these abnormalities remains unknown. Here, our detailed analysis of the genetic abnormalities of 1q41q42 microdeletion cases identified TP53BP2, which encodes apoptosis-stimulating protein of p53 2 (ASPP2), as a candidate gene for brain abnormalities. Consistent with this, Trp53bp2-deficient mice show dilation of lateral ventricles resembling the phenotype of 1q41q42 microdeletion patients. Trp53bp2 deficiency causes 100% neonatal lethality in the C57BL/6 background associated with a high incidence of neural tube defects and a range of developmental abnormalities such as congenital heart defects, coloboma, microphthalmia, urogenital and craniofacial abnormalities. Interestingly, abnormalities show a high degree of overlap with 1q41q42 microdeletion-associated abnormalities. These findings identify TP53BP2 as a strong candidate causative gene for central nervous system (CNS) defects in 1q41q42 microdeletion syndrome, and open new avenues for investigation of the mechanisms underlying CNS abnormalities.
    Matched MeSH terms: Heart Ventricles/abnormalities; Heart Ventricles/pathology
  8. Ng SC, Lim E, Mason DG, Avolio AP, Lovell NH
    Artif Organs, 2013 Aug;37(8):E145-54.
    PMID: 23635073 DOI: 10.1111/aor.12079
    In recent times, the problem of noninvasive suction detection for implantable rotary blood pumps has attracted substantial research interest. Here, we compare the performance of various suction indices for different types of suction and non-suction events based on pump speed irregularity. A total of 171 different indices that consist of previously proposed as well as newly introduced suction indices are tested using regularized logistic regression. These indices can be classified as amplitude based (derived from the mean, maximum, and minimum values of a cycle), duration based (derived from the duration of a cycle), gradient based (derived from the first order as well as higher order differences) and frequency based (derived from the power spectral density). The non-suction event data consists of ventricular ejection with or without arrhythmia and intermittent and continuous non-opening of the aortic valve. The suction event data consists of partial ventricular collapse that occurs intermittently as well as continuously with or without arrhythmia. In addition, we also attempted to minimize the usage of multiple indices by applying the sequential forward floating selection method to find which combination of indices gives the best performance. In general, the amplitude-based and gradient-based indices performed quite well while the duration-based and frequency-based indices performed poorly. By having only two indices ([i] the maximum gradient change in positive slope; and [ii] the standard deviation of the maximum value in a cycle), we were able to achieve a sensitivity of 98.9% and a specificity of 99.7%.
    Matched MeSH terms: Heart Ventricles/physiopathology*
  9. Ong CW, Chan BT, Lim E, Abu Osman NA, Abed AA, Dokos S, et al.
    PMID: 23367368 DOI: 10.1109/EMBC.2012.6347433
    For patient's receiving mechanical circulatory support, malfunction of the left ventricular assist device (LVADs) as well as mal-positioning of the cannula imposes serious threats to their life. It is therefore important to characterize the flow pattern and pressure distribution within the ventricle in the presence of an LVAD. In this paper, we present a 2D axisymmetric fluid structure interaction model of the passive left ventricle (LV) incorporating an LVAD cannula to simulate the effect of the LVAD cannula placement on the vortex dynamics. Results showed that larger recirculation area was formed at the cannula tip with increasing cannula insertion depth, and this is believed to reduce the risk of thrombus formation. Furthermore, we also simulated suction events (collapse of the LV) by closing the inlet. Vortex patterns were significantly altered under this condition, and the greatest LV wall displacement was observed at the part of the myocardium closest to the cannula tip.
    Matched MeSH terms: Heart Ventricles/physiopathology*
  10. Jahanzad Z, Liew YM, Bilgen M, McLaughlin RA, Leong CO, Chee KH, et al.
    Phys Med Biol, 2015 May 21;60(10):4015-31.
    PMID: 25919317 DOI: 10.1088/0031-9155/60/10/4015
    A segmental two-parameter empirical deformable model is proposed for evaluating regional motion abnormality of the left ventricle. Short-axis tagged MRI scans were acquired from 10 healthy subjects and 10 postinfarct patients. Two motion parameters, contraction and rotation, were quantified for each cardiac segment by fitting the proposed model using a non-rigid registration algorithm. The accuracy in motion estimation was compared to a global model approach. Motion parameters extracted from patients were correlated to infarct transmurality assessed with delayed-contrast-enhanced MRI. The proposed segmental model allows markedly improved accuracy in regional motion analysis as compared to the global model for both subject groups (1.22-1.40 mm versus 2.31-2.55 mm error). By end-systole, all healthy segments experienced radial displacement by ~25-35% of the epicardial radius, whereas the 3 short-axis planes rotated differently (basal: 3.3°; mid:  -1° and apical:  -4.6°) to create a twisting motion. While systolic contraction showed clear correspondence to infarct transmurality, rotation was nonspecific to either infarct location or transmurality but could indicate the presence of functional abnormality. Regional contraction and rotation derived using this model could potentially aid in the assessment of severity of regional dysfunction of infarcted myocardium.
    Matched MeSH terms: Heart Ventricles/pathology*
  11. Ng BC, Kleinheyer M, Smith PA, Timms D, Cohn WE, Lim E
    PLoS One, 2018;13(4):e0195975.
    PMID: 29677212 DOI: 10.1371/journal.pone.0195975
    Despite the widespread acceptance of rotary blood pump (RBP) in clinical use over the past decades, the diminished flow pulsatility generated by a fixed speed RBP has been regarded as a potential factor that may lead to adverse events such as vasculature stiffening and hemorrhagic strokes. In this study, we investigate the feasibility of generating physiological pulse pressure in the pulmonary circulation by modulating the speed of a right ventricular assist device (RVAD) in a mock circulation loop. A rectangular pulse profile with predetermined pulse width has been implemented as the pump speed pattern with two different phase shifts (0% and 50%) with respect to the ventricular contraction. In addition, the performance of the speed modulation strategy has been assessed under different cardiovascular states, including variation in ventricular contractility and pulmonary arterial compliance. Our results indicated that the proposed pulse profile with optimised parameters (Apulse = 10000 rpm and ωmin = 3000 rpm) was able to generate pulmonary arterial pulse pressure within the physiological range (9-15 mmHg) while avoiding undesirable pump backflow under both co- and counter-pulsation modes. As compared to co-pulsation, stroke work was reduced by over 44% under counter-pulsation, suggesting that mechanical workload of the right ventricle can be efficiently mitigated through counter-pulsing the pump speed. Furthermore, our results showed that improved ventricular contractility could potentially lead to higher risk of ventricular suction and pump backflow, while stiffening of the pulmonary artery resulted in increased pulse pressure. In conclusion, the proposed speed modulation strategy produces pulsatile hemodynamics, which is more physiologic than continuous blood flow. The findings also provide valuable insight into the interaction between RVAD speed modulation and the pulmonary circulation under various cardiovascular states.
    Matched MeSH terms: Heart Ventricles/physiopathology*
  12. Chan BT, Yeoh HK, Liew YM, Aziz YFA, Sridhar GS, Hamilton-Craig C, et al.
    Med Biol Eng Comput, 2017 Oct;55(10):1883-1893.
    PMID: 28321684 DOI: 10.1007/s11517-017-1639-5
    This study aims to investigate the measurement of left ventricular flow propagation velocity, V p, using phase contrast magnetic resonance imaging and to assess the discrepancies resulting from inflow jet direction and individual left ventricular size. Three V p measuring techniques, namely non-adaptive (NA), adaptive positions (AP) and adaptive vectors (AV) method, were suggested and compared. We performed the comparison on nine healthy volunteers and nine post-infarct patients at four measurement positions, respectively, at one-third, one-half, two-thirds and the conventional 4 cm distances from the mitral valve leaflet into the left ventricle. We found that the V p measurement was affected by both the inflow jet direction and measurement positions. Both NA and AP methods overestimated V p, especially in dilated left ventricles, while the AV method showed the strongest correlation with the isovolumic relaxation myocardial strain rate (r = 0.53, p 
    Matched MeSH terms: Heart Ventricles/physiopathology*
  13. Leong CN, Dokos S, Andriyana A, Liew YM, Chan BT, Abdul Aziz YF, et al.
    Int J Numer Method Biomed Eng, 2020 01;36(1):e3291.
    PMID: 31799767 DOI: 10.1002/cnm.3291
    Myocardial infarct extension, a process involving the enlargement of infarct and border zone, leads to progressive degeneration of left ventricular (LV) function and eventually gives rise to heart failure. Despite carrying a high risk, the causation of infarct extension is still a subject of much speculation. In this study, patient-specific LV models were developed to investigate the correlation between infarct extension and impaired regional mechanics. Subsequently, sensitivity analysis was performed to examine the causal factors responsible for the impaired regional mechanics observed in regions surrounding the infarct and border zone. From our simulations, fibre strain, fibre stress and fibre stress-strain loop (FSSL) were the key biomechanical variables affected in these regions. Among these variables, only FSSL was correlated with infarct extension, as reflected in its work density dissipation (WDD) index value, with high WDD indices recorded at regions with infarct extension. Impaired FSSL is caused by inadequate contraction force generation during the isovolumic contraction and ejection phases. Our further analysis revealed that the inadequacy in contraction force generation is not necessarily due to impaired myocardial intrinsic contractility, but at least in part, due to inadequate muscle fibre stretch at end-diastole, which depresses the ability of myocardium to generate adequate contraction force in the subsequent systole (according to the Frank-Starling law). Moreover, an excessively stiff infarct may cause its neighbouring myocardium to be understretched at end-diastole, subsequently depressing the systolic contractile force of the neighbouring myocardium, which was found to be correlated with infarct extension.
    Matched MeSH terms: Heart Ventricles/pathology; Heart Ventricles/physiopathology
  14. Chan BT, Ahmad Bakir A, Al Abed A, Dokos S, Leong CN, Ooi EH, et al.
    Int J Numer Method Biomed Eng, 2019 06;35(6):e3204.
    PMID: 30912313 DOI: 10.1002/cnm.3204
    Flow energetics have been proposed as early indicators of progressive left ventricular (LV) functional impairment in patients with myocardial infarction (MI), but its correlation with individual MI parameters has not been fully explored. Using electro-fluid-structure interaction LV models, this study investigated the correlation between four MI parameters: infarct size, infarct multiplicity, regional enhancement of contractility at the viable myocardium area (RECVM), and LV mechanical dyssynchrony (LVMD) with intraventricular vortex and flow energetics. In LV with small infarcts, our results showed that infarct appearance amplified the energy dissipation index (DI), where substantial viscous energy loss was observed in areas with high flow velocity and near the infarct-vortex interface. The LV with small multiple infarcts and RECVM showed remarkable DI increment during systole and diastole. In correlation analysis, the systolic kinetic energy fluctuation index (E') was positively related to ejection fraction (EF) (R2  = 0.982) but negatively correlated with diastolic E' (R2  = 0.970). Diastolic E' was inversely correlated with vortex kinetic energy (R2  = 0.960) and vortex depth (R2  = 0.876). We showed an excessive systolic DI could differentiate infarcted LV with normal EF from healthy LV. Strong flow acceleration, LVMD, and vortex-infarct interactions were predominant factors that induced excessive DI in infarcted LVs. Instead of causing undesired flow turbulence, high systolic E' suggested the existence of energetic flow acceleration, while high diastolic E' implied an inefficient diastolic filling. Thus, systolic E' is not a suitable early indicator for progressive LV dysfunction in MI patients, while diastolic E' may be a useful index to indicate diastolic impairment in these patients.
    Matched MeSH terms: Heart Ventricles
  15. Leong CO, Leong CN, Liew YM, Al Abed A, Aziz YFA, Chee KH, et al.
    Int J Numer Method Biomed Eng, 2021 08;37(8):e3501.
    PMID: 34057819 DOI: 10.1002/cnm.3501
    Infarct extension involves necrosis of healthy myocardium in the border zone (BZ), progressively enlarging the infarct zone (IZ) and recruiting the remote zone (RZ) into the BZ, eventually leading to heart failure. The mechanisms underlying infarct extension remain unclear, but myocyte stretching has been suggested as the most likely cause. Using human patient-specific left-ventricular (LV) numerical simulations established from cardiac magnetic resonance imaging (MRI) of myocardial infarction (MI) patients, the correlation between infarct extension and regional mechanics abnormality was investigated by analysing the fibre stress-strain loops (FSSLs). FSSL abnormality was characterised using the directional regional external work (DREW) index, which measures FSSL area and loop direction. Sensitivity studies were also performed to investigate the effect of infarct stiffness on regional myocardial mechanics and potential for infarct extension. We found that infarct extension was correlated to severely abnormal FSSL in the form of counter-clockwise loop at the RZ close to the infarct, as indicated by negative DREW values. In regions demonstrating negative DREW values, we observed substantial fibre stretching in the isovolumic relaxation (IVR) phase accompanied by a reduced rate of systolic shortening. Such stretching in IVR phase in part of the RZ was due to its inability to withstand the high LV pressure that was still present and possibly caused by regional myocardial stiffness inhomogeneity. Further analysis revealed that the occurrence of severely abnormal FSSL due to IVR fibre stretching near the RZ-BZ boundary was due to a large amount of surrounding infarcted tissue, or an excessively stiff IZ.
    Matched MeSH terms: Heart Ventricles
  16. Ding CCA, Dokos S, Bakir AA, Zamberi NJ, Liew YM, Chan BT, et al.
    Biomed Eng Online, 2024 Feb 22;23(1):24.
    PMID: 38388416 DOI: 10.1186/s12938-024-01206-2
    Aortic stenosis, hypertension, and left ventricular hypertrophy often coexist in the elderly, causing a detrimental mismatch in coupling between the heart and vasculature known as ventricular-vascular (VA) coupling. Impaired left VA coupling, a critical aspect of cardiovascular dysfunction in aging and disease, poses significant challenges for optimal cardiovascular performance. This systematic review aims to assess the impact of simulating and studying this coupling through computational models. By conducting a comprehensive analysis of 34 relevant articles obtained from esteemed databases such as Web of Science, Scopus, and PubMed until July 14, 2022, we explore various modeling techniques and simulation approaches employed to unravel the complex mechanisms underlying this impairment. Our review highlights the essential role of computational models in providing detailed insights beyond clinical observations, enabling a deeper understanding of the cardiovascular system. By elucidating the existing models of the heart (3D, 2D, and 0D), cardiac valves, and blood vessels (3D, 1D, and 0D), as well as discussing mechanical boundary conditions, model parameterization and validation, coupling approaches, computer resources and diverse applications, we establish a comprehensive overview of the field. The descriptions as well as the pros and cons on the choices of different dimensionality in heart, valve, and circulation are provided. Crucially, we emphasize the significance of evaluating heart-vessel interaction in pathological conditions and propose future research directions, such as the development of fully coupled personalized multidimensional models, integration of deep learning techniques, and comprehensive assessment of confounding effects on biomarkers.
    Matched MeSH terms: Heart Ventricles
  17. Mohamed A, Leeson P, Lewandowski AJ
    J Physiol, 2018 12;596(23):5505-5506.
    PMID: 29660821 DOI: 10.1113/JP276067
    Matched MeSH terms: Heart Ventricles
  18. Qureshi AU, Abbaker AE, Sivalingam S, Latiff HA
    PMID: 24668992 DOI: 10.1177/2150135113509819
    Valved bovine jugular vein (Contegra) conduit is considered a suitable choice for pediatric population with congenital heart defect requiring right ventricle to main pulmonary artery connection. Intermediate follow-up studies have shown the propensity of developing distal conduit stenosis and valve thrombosis. We present a rare case of aneurysmal dilatation of the conduit leading to valve failure requiring conduit explantation.
    Matched MeSH terms: Heart Ventricles/radiography; Heart Ventricles/surgery
  19. Khalil A, Faisal A, Ng SC, Liew YM, Lai KW
    J Med Imaging (Bellingham), 2017 Jul;4(3):037001.
    PMID: 28840172 DOI: 10.1117/1.JMI.4.3.037001
    A registration method to fuse two-dimensional (2-D) echocardiography images with cardiac computed tomography (CT) volume is presented. The method consists of two major procedures: temporal and spatial registrations. In temporal registration, the echocardiography frames at similar cardiac phases as the CT volume were interpolated based on electrocardiogram signal information, and the noise of the echocardiography image was reduced using the speckle reducing anisotropic diffusion technique. For spatial registration, an intensity-based normalized mutual information method was applied with a pattern search optimization algorithm to produce an interpolated cardiac CT image. The proposed registration framework does not require optical tracking information. Dice coefficient and Hausdorff distance for the left atrium assessments were [Formula: see text] and [Formula: see text], respectively; for left ventricle, they were [Formula: see text] and [Formula: see text], respectively. There was no significant difference in the mitral valve annulus diameter measurement between the manually and automatically registered CT images. The transformation parameters showed small deviations ([Formula: see text] deviation in translation and [Formula: see text] for rotation) between manual and automatic registrations. The proposed method aids the physician in diagnosing mitral valve disease as well as provides surgical guidance during the treatment procedure.
    Matched MeSH terms: Heart Ventricles
  20. Dayapala A, Kumar V
    Am J Forensic Med Pathol, 2009 Jun;30(2):171-4.
    PMID: 19465810 DOI: 10.1097/PAF.0b013e3181875a79
    Sudden deaths because of congenital heart diseases are infrequently referred to the forensic pathologist for autopsy. Many of such deaths, if already diagnosed are released directly from the hospital without autopsy. Even forensic pathologists face a few difficulties in performing the autopsy on such infrequent cases, as they are not always updated with the anatomy of anomalies. While dealing with such cases, the concerned forensic pathologist is compelled to refer literature and textbooks again to understand the nature of developmental defects. This is especially so when dealing with cases of situs inversus accompanied by transposition of great arteries and other congenital cardiac abnormalities and variants such as single ventricle, double outlet right ventricle, Taussig-Bing variety etc. In the present case also, situs inversus with transposition of great vessels and other anomalies have been noted and studied.
    Matched MeSH terms: Heart Ventricles/abnormalities; Heart Ventricles/pathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links