The mosquito Anopheles balabacensis balabacensis has been identified as a natural vector of at least two species of simian malaria in the monsoon forests of the northern Malay States. This mosquito is also a serious vector of human malaria from Viet Nam to northern Malaya. This is the first report of a mosquito which transmits both human and simian malaria in nature.
An exophilic population of the vector mosquito Anopheles balabacensis Baisas was investigated in two mark-recapture studies (16.ix-13.x.1986 and 6-26.i.1987) at an inland, foothill village in Sabah, Malaysia. Wild female mosquitoes were intercepted as they came to feed on man or buffalo, given a bloodmeal, marked with fluorescent dust and released. The recapture rate was about 12%. A new method of analysis is proposed which uses cross-correlation and a time series model. The estimated survival per oviposition cycle was 0.48-0.54 and the oviposition cycle interval 2-3 days.
A study was conducted to examine the persistency of transovarial dengue virus type 2 (DEN-2) in a Selangor strain of Aedes aegypti mosquitoes. Two hundred 4-5 day old female mosquitoes were fed with blood containing dengue virus. The infected mosquitoes were reared to the 7th generation; each generation was screened for the virus using immunological staining methods. The virus was detectable until the 5th generation but absent in the 6th and the 7th generations. Therefore, dengue virus type 2 can be transmitted transovarially in Aedes aegypti mosquitoes until the fifth generation under laboratory conditions.
Malaria vector surveys were carried out in 8 provinces in Lao PDR in 1999. The surveys were conducted in 4 provinces - Savannakhet, Champasak, Luang Perbang and Sayaboury in May and in another 4 provinces - Bolikhamsay, Sarvan, Sekong and Vientiane in December 1999. Bare leg collection were carried out indoors and outdoors from 6 pm to 5 am. All anopheline mosquitos were identified, dissected and the gut, gland and ovaries were examined. A total of 438 Anopheles mosquitos belonging to 19 species were obtained. Of these only 3 species were found to be infected with oocysts - An. maculatus, An. dirus and An. minimus. All these species were found biting both indoors and outdoors. An. aconitus was the predominant species obtained in the December collection but its vectorial status remains unknown.
Five strains of Ma. uniformis from Malaysia were tested for their susceptibility to infection with subperiodic B. malayi. All were found to be susceptible with infection rates ranging from 62% to 100%. The susceptibility rates were directly related to the microfilarial densities of the cat at the time of feeding. Statistical analysis showed no significant difference (p greater than 0.05) among the means of the indices of experimental infection as well as the percentage of infective mosquitoes of the five strains and an old laboratory colony. They were all equally susceptible to subperiodic B. malayi.
Facts are presented which suggest that mosquitoes of the Anopheles barbirostris species group that gave me a very uncomfortable night in 1941, whilst serving with the Volunteer forces, were probably A. donaldi. This species is now known to be a vector of human filariasis and probably malaria. Some of the steps are described by which I was led, sixteen years later, to recognise and later name donaldi as a new species. Reasons are given for thinking that around 1918 A. donaldi was present in some numbers at the railway town of Gemas where malaria was a serious problem. H.P. Hacker made a survey at Gemas in 1918 and though the principal vector was probably A. maculatus, 'umbrosus' and 'barbirostris' were the commonest larvae he found.
Larvae obtained from Taman Samudera (Gombak, Selangor), Kampung Banjar (Gombak, Selangor), Taman Lembah Maju (Cheras, Kuala Lumpur) and Kampung Baru (City centre, Kuala Lumpur) were bioassayed with diagnostic dosage (0.012 mg/L) and operational dosage (1 mg/L) of temephos. All strains of Aedes aegypti and Aedes albopictus showed percentage mortality in the range of 16.00 to 59.05 and 6.4 to 59.50 respectively, after 24 hours. LT50 values for the 6 strains of Ae. aegypti and Ae. albopictus were between 41.25 to 54.42 minutes and 52.67 to 141.76 minutes respectively, and the resistance ratio for both Aedes species were in the range of 0.68 to 1.82 when tested with operational dosage, 1 mg/L temephos. These results indicate that Aedes mosquitoes have developed some degree of resistance. However, complete mortality for all strains were achieved after 24 hours when tested against 1 mg/L temephos.