Displaying publications 21 - 25 of 25 in total

Abstract:
Sort:
  1. Aftab MF, Afridi SK, Mughal UR, Karim A, Haleem DJ, Kabir N, et al.
    J. Chem. Neuroanat., 2017 04;81:1-9.
    PMID: 28093241 DOI: 10.1016/j.jchemneu.2017.01.001
    Diabetes is associated with neurodegeneration. Glycation ensues in diabetes and glycated proteins cause insulin resistance in brain resulting in amyloid plaques and NFTs. Also glycation enhances gliosis by promoting neuroinflammation. Currently there is no therapy available to target neurodegenration in brain therefore, development of new therapy that offers neuroprotection is critical. The objective of this study was to evaluate mechanistic effect of isatin derivative URM-II-81, an anti-glycation agent for improvement of insulin action in brain and inhibition of neurodegenration. Methylglyoxal induced stress was inhibited by treatment with URM-II-81. Also, Ser473 and Ser9 phosphorylation of Akt and GSK-3β respectively were restored by URM-II-81. Effect of URM-II-81 on axonal integrity was studied by differentiating Neuro2A using retinoic acid. URM-II-81 restored axonal length in MGO treated cells. Its effects were also studied in high fat and low dose streptozotocin induced diabetic mice where it reduced RBG levels and inhibited glycative stress by reducing HbA1c. URM-II-81 treatment also showed inhibition of gliosis in hippocampus. Histological analysis showed reduced NFTs in CA3 hippocampal region and restoration of insulin signaling in hippocampii of diabetic mice. Our findings suggest that URM-II-81 can be developed as a new therapeutic agent for treatment of neurodegenration.
    Matched MeSH terms: Monoamine Oxidase Inhibitors/pharmacology; Monoamine Oxidase Inhibitors/therapeutic use; Monoamine Oxidase Inhibitors/chemistry
  2. Ahmad S, Zaib S, Jalil S, Shafiq M, Ahmad M, Sultan S, et al.
    Bioorg Chem, 2018 10;80:498-510.
    PMID: 29996111 DOI: 10.1016/j.bioorg.2018.04.012
    In this research work, we report the synthesis and biological evaluation of two new series of 1-benzyl-4-(benzylidenehydrazono)-3,4-dihydro-1H-benzo[c] [1,2]thiazine 2,2-dioxides and 1-benzyl-4-((1-phenylethylidene)hydrazono)-3,4-dihydro-1H-benzo[c][1,2]thiazine 2,2-dioxides. The synthetic plan involves the mesylation of methyl anthranilate with subsequent N-benzylation of the product. The methyl 2-(N-benzylmethylsulfonamido)benzoate was subjected to cyclization reaction in the presence of sodium hydride to obtain 1-benzyl-1H-benzo[c][1,2]thiazin-4(3H)-one 2,2-dioxide which was treated with hydrazine hydrate to get corresponding hydrazone precursor. Finally, the titled compounds were obtained by reaction of hydrazone with various substituted aldehydes and ketones. The synthesized derivatives were subjected to carry out their inhibition activities against monoamine oxidases along with modelling investigations to evaluate their binding interactions and dynamic stability during the docking studies. The inhibition profile of potent compounds was found as competitive for both the isozymes. The compounds were more selective inhibitors of MAO-A as compared to MAO-B. Moreover, drug likeness profile of the derivatives was evaluated to have an additional insight into the physicochemical properties. The molecular dynamic simulations predicted the behaviour of amino acids with the active site residues.
    Matched MeSH terms: Monoamine Oxidase
  3. Parasuraman S, Zhen KM, Banik U, Christapher PV
    Pharmacognosy Res, 2017 Jul-Sep;9(3):247-252.
    PMID: 28827965 DOI: 10.4103/pr.pr_8_17
    OBJECTIVE: To evaluate the effect of curcumin on olanzapine-induced obesity in rats.

    MATERIALS AND METHODS: Sprague-Dawley (SD) rats were used for experiments. The animals were divided into six groups, namely, normal control, olanzapine control, betahistine (10 mg/kg), and curcumin 50, 100, and 200 mg/kg treated groups. Except the normal control group, all other animals were administered with olanzapine 4 mg/kg intraperitoneally to induce obesity. The drugs were administered once daily, per oral for 28 days. During the experiment, body weight changes and behavior alterations were monitored at regular intervals. At the end of the experiment, blood sample was collected from all the experimental animals for biochemical analysis. Part of the liver and kidney tissues was harvested from the sacrificed animals and preserved in neutral formalin for histopathological studies.

    RESULTS: Curcumin showed a significant reduction in olanzapine-induced body weight gain on the rats and improved the locomotor effects. The effect of curcumin on olanzapine-induced body weight gain is not comparable with that of betahistine.

    CONCLUSION: This study has shown metabolic alteration effect of curcumin on olanzapine, an antipsychotic drug, treated SD rats.

    SUMMARY: Olanzapine is an atypical antipsychotic drug used for the treatment of schizophrenia and bipolar disorder. Obesity is an adverse effect of olanzapine, and the present study was made an attempt to study the effect of curcumin on olanzapine-induced obesity in rats. In this present study, curcumin significantly reduced olanzapine-induced body weight gain in rats. Abbreviations Used: 5HT: 5-hydroxytryptamine, ALP: Alkaline phosphatase, ALT: Alanine transaminase, ANOVA: Analysis of variance, AST: Aspartate transaminase, CMC: Carboxymethyl cellulose, D: Dopamine, H and E: Hematoxylin and Eosin stain, H: Histamine, HDL-C: Highdensity lipoprotein cholesterol, IP: Intraperitoneal, MAO: Monoamine oxidase, NaOH: Sodium hydroxide, SD rats: Sprague Dawley rats, TCs: Total cholesterols, TG: Triglyceride.
    Matched MeSH terms: Monoamine Oxidase
  4. Martins J, Brijesh S
    J Ethnopharmacol, 2019 Oct 07.
    PMID: 31600560 DOI: 10.1016/j.jep.2019.112280
    ETHNOPHARMACOLOGICAL RELEVANCE: Erythrina variegata, commonly referred to as 'tiger's claw' or 'Indian coral tree' and 'Parijata' in Sanskrit, belongs to the Fabaceae family. It is a plant native to the coast of India, China, Malaysia, East Africa, Northern Australia and distributed in tropical and subtropical regions worldwide. In traditional medicine, 'Paribhadra' an Indian preparation, makes use of the leaves and bark of E. variegata to destroy pathogenic parasites and relieve joint pains. E. variegata is known to exhibit anxiolytic and anti-convulsant activities. Folkore medicine also suggests that E. variegata barks act on the central nervous system. However, there is a lack of data demonstrating this. The anti-depressant activity of E. variegata bark has not been reported in literature.

    AIM OF THE STUDY: Our study focuses on previously unreported anti-depressant activity of E. variegata bark ethanolic extract (EBE) and determination of its mechanism of action possibly through regulation of monoamine oxidase activity in mouse brain homogenates.

    MATERIALS AND METHODS: EBE was characterized using standard protocols for phytochemical analysis, followed by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) analysis. Anti-depressant activity of EBE (50, 100, 200 and 500 mg/kg) was evaluated in Swiss white albino mice using acute and chronic forced swim test (FST) models. Furthermore, the potential use of the extract as an adjunct to selective serotonin reuptake inhibitor (SSRI), escitalopram, was evaluated using the chronic unpredictable mild stress test model wherein inhibitory effects on monoamine oxidase (MAO) A and B were assessed by spectrophotometric-chemical analysis in mouse whole brain homogenates.

    RESULTS: The extract showed significant reduction in immobility time periods in both acute (200 mg/kg) and chronic (100, 200 and 500 mg/kg) FST models. When used as an adjunct with escitalopram (15 mg/kg), the extract (100, 200 and 500 mg/kg) showed significantly greater inhibition of MAO-A and B activities when compared to escitalopram alone (30 mg/kg). Phytochemical analysis of EBE revealed presence of sugars, steroids, glycosides, alkaloids and tannins. LC-MS and GC-MS analysis identified components such as 2-amino-3-methyl-1-butanol, phenylethylamine, eriodictyol, daidzein and pomiferin, N-ethyl arachidonoyl amine, inosine diphosphate, trimipramine, granisetron, 3,4-dihydroxymandelic acid, ethyl ester, tri-TMS and dodecane, previously reported for their anti-depressant activity.

    CONCLUSIONS: The study thus demonstrated potential for use of the E. variegata bark ethanolic extract as an adjunct to currently available SSRI treatment. The study also identified components present in E. variegata bark ethanolic extract that may be responsible for its anti-depressant activity. Furthermore, the study thus confirms the traditional use of E. variegata barks in improving CNS function through its anti-depressant like activity.

    Matched MeSH terms: Monoamine Oxidase
  5. Agatonovic-Kustrin S, Kettle C, Morton DW
    Biomed Pharmacother, 2018 Oct;106:553-565.
    PMID: 29990843 DOI: 10.1016/j.biopha.2018.06.147
    An increase in dementia numbers and global trends in population aging across the world prompts the need for new medications to treat the complex biological dysfunctions, such as neurodegeneration associated with dementia. Alzheimer's disease (AD) is the most common form of dementia. Cholinergic signaling, which is important in cognition, is slowly lost in AD, so the first line therapy is to treat symptoms with acetylcholinesterase inhibitors to increase levels of acetylcholine. Out of five available FDA-approved AD medications, donepezil, galantamine and rivastigmine are cholinesterase inhibitors while memantine, a N-methyl d-aspartate (NMDA) receptor antagonist, blocks the effects of high glutamate levels. The fifth medication consists of a combination of donepezil and memantine. Although these medications can reduce and temporarily slow down the symptoms of AD, they cannot stop the damage to the brain from progressing. For a superior therapeutic effect, multi-target drugs are required. Thus, a Multi-Target-Directed Ligand (MTDL) strategy has received more attention by scientists who are attempting to develop hybrid molecules that simultaneously modulate multiple biological targets. This review highlights recent examples of the MTDL approach and fragment based strategy in the rational design of new potential AD medications.
    Matched MeSH terms: Monoamine Oxidase Inhibitors/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links