Displaying publications 21 - 40 of 263 in total

Abstract:
Sort:
  1. Husain R, Duncan MT, Cheah SH, Ch'ng SL
    Br J Nutr, 1987 Jul;58(1):41-8.
    PMID: 3620437
    1. Anthropometric variables, resting heart rate and respiratory gas exchange were measured in twelve male and nine female Asiatic adult Moslems during the month of Ramadan, the week before and the month after Ramadan. 2. Energy intakes were estimated from dietary recall during fasting and non-fasting conditions. 3. Both male and female subjects experienced a decrease in body mass with the reduction in energy intake during fasting. Males experienced a greater reduction than females in resting heart rate; females lost more body-weight and subcutaneous fat than males. 4. Urine output and fluid intake were measured in twelve male subjects for 1 d during each week of fasting and 1 d during the pre-fasting control period. Among the subjects examined, the Ramadan regimen did not result in changes in the pattern of fluid exchange.
    Matched MeSH terms: Respiration
  2. Tan SB, Liam CK, Pang YK, Leh-Ching Ng D, Wong TS, Wei-Shen Khoo K, et al.
    J Pain Symptom Manage, 2019 04;57(4):802-808.
    PMID: 30684635 DOI: 10.1016/j.jpainsymman.2019.01.009
    CONTEXT: Dyspnea is a common and distressing symptom in respiratory diseases. Despite advances in the treatment of various lung diseases, the treatment modalities for dyspnea remain limited.

    OBJECTIVES: This study aims to examine the effect of 20-minute mindful breathing on the rapid reduction of dyspnea at rest in patients with lung cancer, chronic obstructive pulmonary disease, and asthma.

    METHODS: We conducted a parallel-group, nonblinded, randomized controlled trial of standard care plus 20-minute mindful breathing vs. standard care alone for patients with moderate to severe dyspnea due to lung disease, named previously, at the respiratory unit of University Malaya Medical Centre in Malaysia, from August 1, 2017, to March 31, 2018.

    RESULTS: Sixty-three participants were randomly assigned to standard care plus a 20-minute mindful breathing session (n = 32) or standard care alone (n = 31), with no difference in their demographic and clinical characteristics. There was statistically significant reduction in dyspnea in the mindful breathing group compared with the control group at minute 5 (U = 233.5, n1 = 32, n2 = 31, mean rank1 = 23.28, mean rank2 = 37.72, z = -3.574, P 

    Matched MeSH terms: Respiration*
  3. Chiu CL, Murugasu J, Chan L
    Anaesth Intensive Care, 2003 Apr;31(2):187-92.
    PMID: 12712784
    We have compared the use of the laryngeal mask airway with the new modified laryngeal tube in a prospective randomized controlled study. Sixty ASA 1 or 2 patients, aged 18 to 65 years, scheduled for elective surgery and breathing spontaneously under general anaesthesia, were studied. After preoxygenation, anaesthesia was induced with fentanyl and propofol. The patients were randomized to receive either a laryngeal mask airway or a laryngeal tube. Anaesthesia was maintained with nitrous oxide, oxygen and isoflurane. We recorded the speed and the ease of insertion, the number of attempts needed to successfully secure the airway and intraoperative complications, such as partial airway obstruction needing airway manipulation. The airway devices were removed with the patients fully awake at the end of surgery. Systolic arterial blood pressure, heart rate and end-tidal CO2 were recorded at various time intervals. Postoperative complications were recorded. We found that the incidence of partial airway obstruction needing intraoperative airway manipulation was higher with the laryngeal tube than with the laryngeal mask airway. We conclude that during spontaneous ventilation the modified laryngeal tube is not as reliable in providing a satisfactory airway and we consider it is not a suitable alternative to the laryngeal mask airway.
    Matched MeSH terms: Respiration
  4. Goh AY, Lum LC, Chan PW
    J Trop Pediatr, 1999 Dec;45(6):362-4.
    PMID: 10667007
    Paediatric intensive care in Malaysia is a developing subspecialty with an increasing number of specialists with a paediatric background being involved in the care of critically ill children. A part prospective and part retrospective review of 118 consecutive non-neonatal ventilated patients in University Hospital, Kuala Lumpur was carried out from 1 June 1995 to 31 December 1996 to study the clinical epidemiology and outcome in our paediatric intensive case unit (PICU). The mean age of the patients was 33.9 +/- 6.0 months (median 16 months). The main mode of admission was emergency (96.6 per cent) with an overall mortality rate of 42 per cent (50/118). The mean paediatric risk of mortality (PRISM) score was 20 +/- 0.98 SEM, with 53 per cent of patients having a score of over 30 per cent. Multiorgan dysfunction (MODS) was identified in 71 per cent of patients. Admission efficiency (mortality risk > 1 per cent) was 97 per cent. Standardized mortality rate using PRISM was an acceptable 1.06. The main diagnostic categories were respiratory (32 per cent), neurology (22 per cent), haematology-oncology (18 per cent); the aetiology of dysfunction was mainly infective. Non-survivors were older (29.5 vs. 13.8 months, p < 0.0001), had more severe illness (mean PRISM score 30 vs. 14, p < 0.0001), were more likely to develop MODS (96 vs. 53 per cent, p < 0.0001) and required more intervention and monitoring. Paediatric intensive care in Malaysia differs widely from that in developed countries in patient characteristics, severity of illness, and care modalities provided.
    Matched MeSH terms: Respiration, Artificial
  5. Goh AY, Chan PW
    Respirology, 1999 Mar;4(1):97-9.
    PMID: 10339738
    Acute myopathy complicating treatment of status asthmaticus has been increasingly recognized since its original description in 1977. We report a case of an 11-year-old boy with severe asthma requiring mechanical ventilation. He was given high doses of parenteral steroids and neuromuscular blockade with non-depolarizing agents in order to achieve controlled hypoventilation with an ensuing hypercapnoea. He developed rhabdomyolysis with elevated creatinine kinase and renal impairment secondary to myoglobinuria. Electrophysiological studies revealed myopathic abnormalities. The aetiology for this myopathy appears to be related to therapy with parenteral steroids, muscle-relaxant agents and respiratory acidosis. Patients treated with steroids and neuromuscular blocking agents should be regularly monitored for development of myopathy.
    Matched MeSH terms: Respiration, Artificial/adverse effects*
  6. Ho JJ, Chang AS
    J Trop Pediatr, 2007 Aug;53(4):232-7.
    PMID: 17578848
    Over a 10-year period there was increasing involvement by clinicians in the generation and implementation of evidence-based practices in the neonatal intensive care unit (NICU). For two cohorts of very low birth weight (VLBW) babies admitted 10 years apart to a developing country, NICU were compared and changes occurring in process of care that might have contributed to any change in outcome were documented.
    Matched MeSH terms: Respiration, Artificial
  7. Morton SE, Chiew YS, Pretty C, Moltchanova E, Scarrott C, Redmond D, et al.
    Math Biosci, 2017 02;284:21-31.
    PMID: 27301378 DOI: 10.1016/j.mbs.2016.06.001
    Randomised control trials have sought to seek to improve mechanical ventilation treatment. However, few trials to date have shown clinical significance. It is hypothesised that aside from effective treatment, the outcome metrics and sample sizes of the trial also affect the significance, and thus impact trial design. In this study, a Monte-Carlo simulation method was developed and used to investigate several outcome metrics of ventilation treatment, including 1) length of mechanical ventilation (LoMV); 2) Ventilator Free Days (VFD); and 3) LoMV-28, a combination of the other metrics. As these metrics have highly skewed distributions, it also investigated the impact of imposing clinically relevant exclusion criteria on study power to enable better design for significance. Data from invasively ventilated patients from a single intensive care unit were used in this analysis to demonstrate the method. Use of LoMV as an outcome metric required 160 patients/arm to reach 80% power with a clinically expected intervention difference of 25% LoMV if clinically relevant exclusion criteria were applied to the cohort, but 400 patients/arm if they were not. However, only 130 patients/arm would be required for the same statistical significance at the same intervention difference if VFD was used. A Monte-Carlo simulation approach using local cohort data combined with objective patient selection criteria can yield better design of ventilation studies to desired power and significance, with fewer patients per arm than traditional trial design methods, which in turn reduces patient risk. Outcome metrics, such as VFD, should be used when a difference in mortality is also expected between the two cohorts. Finally, the non-parametric approach taken is readily generalisable to a range of trial types where outcome data is similarly skewed.
    Matched MeSH terms: Respiration, Artificial/statistics & numerical data*
  8. Damanhuri NS, Chiew YS, Othman NA, Docherty PD, Pretty CG, Shaw GM, et al.
    Comput Methods Programs Biomed, 2016 Jul;130:175-85.
    PMID: 27208532 DOI: 10.1016/j.cmpb.2016.03.025
    BACKGROUND: Respiratory system modelling can aid clinical decision making during mechanical ventilation (MV) in intensive care. However, spontaneous breathing (SB) efforts can produce entrained "M-wave" airway pressure waveforms that inhibit identification of accurate values for respiratory system elastance and airway resistance. A pressure wave reconstruction method is proposed to accurately identify respiratory mechanics, assess the level of SB effort, and quantify the incidence of SB effort without uncommon measuring devices or interruption to care.

    METHODS: Data from 275 breaths aggregated from all mechanically ventilated patients at Christchurch Hospital were used in this study. The breath specific respiratory elastance is calculated using a time-varying elastance model. A pressure reconstruction method is proposed to reconstruct pressure waves identified as being affected by SB effort. The area under the curve of the time-varying respiratory elastance (AUC Edrs) are calculated and compared, where unreconstructed waves yield lower AUC Edrs. The difference between the reconstructed and unreconstructed pressure is denoted as a surrogate measure of SB effort.

    RESULTS: The pressure reconstruction method yielded a median AUC Edrs of 19.21 [IQR: 16.30-22.47]cmH2Os/l. In contrast, the median AUC Edrs for unreconstructed M-wave data was 20.41 [IQR: 16.68-22.81]cmH2Os/l. The pressure reconstruction method had the least variability in AUC Edrs assessed by the robust coefficient of variation (RCV)=0.04 versus 0.05 for unreconstructed data. Each patient exhibited different levels of SB effort, independent from MV setting, indicating the need for non-invasive, real time assessment of SB effort.

    CONCLUSION: A simple reconstruction method enables more consistent real-time estimation of the true, underlying respiratory system mechanics of a SB patient and provides the surrogate of SB effort, which may be clinically useful for clinicians in determining optimal ventilator settings to improve patient care.

    Matched MeSH terms: Respiration, Artificial*
  9. Langdon R, Docherty PD, Chiew YS, Chase JG
    Math Biosci, 2017 02;284:32-39.
    PMID: 27513728 DOI: 10.1016/j.mbs.2016.08.001
    For patients with acute respiratory distress syndrome (ARDS), mechanical ventilation (MV) is an essential therapy in the intensive care unit (ICU). Suboptimal PEEP levels in MV can cause ventilator induced lung injury, which is associated with increased mortality, extended ICU stay, and high cost. The ability to predict the outcome of respiratory mechanics in response to changes in PEEP would thus provide a critical advantage in personalising and improving care. Testing the potentially dangerous high pressures would not be required to assess their impact. A nonlinear autoregressive (NARX) model was used to predict airway pressure in 19 data sets from 10 mechanically ventilated ARDS patients. Patient-specific NARX models were identified from pressure and flow data over one, two, three, or four adjacent PEEP levels in a recruitment manoeuvre. Extrapolation of NARX model elastance functions allowed prediction of patient responses to PEEP changes to higher or lower pressures. NARX model predictions were more successful than those using a well validated first order model (FOM). The most clinically important results were for extrapolation up one PEEP step of 2cmH2O from the highest PEEP in the training data. When the NARX model was trained on one PEEP level, the mean RMS residual for the extrapolation PEEP level was 0.52 (90% CI: 0.47-0.57) cmH2O, compared to 1.50 (90% CI: 1.38-1.62) cmH2O for the FOM. When trained on four PEEP levels, the NARX result was 0.50 (90% CI: 0.42-0.58) cmH2O, and was 1.95 (90% CI: 1.71-2.19) cmH2O for the FOM. The results suggest that a full recruitment manoeuvre may not be required for the NARX model to obtain a useful estimate of the pressure waveform at higher PEEP levels. The methodology could thus allow clinicians to make informed decisions about ventilator PEEP settings while reducing the risk associated with high PEEP, and subsequent high peak airway pressures.
    Matched MeSH terms: Respiration, Artificial*
  10. Major VJ, Chiew YS, Shaw GM, Chase JG
    Biomed Eng Online, 2018 Nov 12;17(1):169.
    PMID: 30419903 DOI: 10.1186/s12938-018-0599-9
    BACKGROUND: Mechanical ventilation is an essential therapy to support critically ill respiratory failure patients. Current standards of care consist of generalised approaches, such as the use of positive end expiratory pressure to inspired oxygen fraction (PEEP-FiO2) tables, which fail to account for the inter- and intra-patient variability between and within patients. The benefits of higher or lower tidal volume, PEEP, and other settings are highly debated and no consensus has been reached. Moreover, clinicians implicitly account for patient-specific factors such as disease condition and progression as they manually titrate ventilator settings. Hence, care is highly variable and potentially often non-optimal. These conditions create a situation that could benefit greatly from an engineered approach. The overall goal is a review of ventilation that is accessible to both clinicians and engineers, to bridge the divide between the two fields and enable collaboration to improve patient care and outcomes. This review does not take the form of a typical systematic review. Instead, it defines the standard terminology and introduces key clinical and biomedical measurements before introducing the key clinical studies and their influence in clinical practice which in turn flows into the needs and requirements around how biomedical engineering research can play a role in improving care. Given the significant clinical research to date and its impact on this complex area of care, this review thus provides a tutorial introduction around the review of the state of the art relevant to a biomedical engineering perspective.

    DISCUSSION: This review presents the significant clinical aspects and variables of ventilation management, the potential risks associated with suboptimal ventilation management, and a review of the major recent attempts to improve ventilation in the context of these variables. The unique aspect of this review is a focus on these key elements relevant to engineering new approaches. In particular, the need for ventilation strategies which consider, and directly account for, the significant differences in patient condition, disease etiology, and progression within patients is demonstrated with the subsequent requirement for optimal ventilation strategies to titrate for patient- and time-specific conditions.

    CONCLUSION: Engineered, protective lung strategies that can directly account for and manage inter- and intra-patient variability thus offer great potential to improve both individual care, as well as cohort clinical outcomes.

    Matched MeSH terms: Positive-Pressure Respiration/instrumentation*; Positive-Pressure Respiration/methods; Respiration, Artificial/instrumentation*; Respiration, Artificial/methods
  11. Kim KT, Morton S, Howe S, Chiew YS, Knopp JL, Docherty P, et al.
    Trials, 2020 Feb 01;21(1):130.
    PMID: 32007099 DOI: 10.1186/s13063-019-4035-7
    BACKGROUND: Positive end-expiratory pressure (PEEP) at minimum respiratory elastance during mechanical ventilation (MV) in patients with acute respiratory distress syndrome (ARDS) may improve patient care and outcome. The Clinical utilisation of respiratory elastance (CURE) trial is a two-arm, randomised controlled trial (RCT) investigating the performance of PEEP selected at an objective, model-based minimal respiratory system elastance in patients with ARDS.

    METHODS AND DESIGN: The CURE RCT compares two groups of patients requiring invasive MV with a partial pressure of arterial oxygen/fraction of inspired oxygen (PaO2/FiO2) ratio ≤ 200; one criterion of the Berlin consensus definition of moderate (≤ 200) or severe (≤ 100) ARDS. All patients are ventilated using pressure controlled (bi-level) ventilation with tidal volume = 6-8 ml/kg. Patients randomised to the control group will have PEEP selected per standard practice (SPV). Patients randomised to the intervention will have PEEP selected based on a minimal elastance using a model-based computerised method. The CURE RCT is a single-centre trial in the intensive care unit (ICU) of Christchurch hospital, New Zealand, with a target sample size of 320 patients over a maximum of 3 years. The primary outcome is the area under the curve (AUC) ratio of arterial blood oxygenation to the fraction of inspired oxygen over time. Secondary outcomes include length of time of MV, ventilator-free days (VFD) up to 28 days, ICU and hospital length of stay, AUC of oxygen saturation (SpO2)/FiO2 during MV, number of desaturation events (SpO2 

    Matched MeSH terms: Respiration, Artificial/methods
  12. Wong JW, Chiew YS, Desaive T, Chase JG
    Biomed Eng Online, 2022 Feb 09;21(1):11.
    PMID: 35139858 DOI: 10.1186/s12938-022-00983-y
    BACKGROUND: Surges of COVID-19 infections have led to insufficient supply of mechanical ventilators (MV), resulting in rationing of MV care. In-parallel, co-mechanical ventilation (Co-MV) of multiple patients is a potential solution. However, due to lack of testing, there is currently no means to match ventilation requirements or patients, with no guidelines to date. In this research, we have developed a model-based method for patient matching for pressure control mode MV.

    METHODS: The model-based method uses a single-compartment lung model (SCM) to simulate the resultant tidal volume of patient pairs at a set ventilation setting. If both patients meet specified safe ventilation criteria under similar ventilation settings, the actual mechanical ventilator settings for Co-MV are determined via simulation using a double-compartment lung model (DCM). This method allows clinicians to analyse Co-MV in silico, before clinical implementation.

    RESULTS: The proposed method demonstrates successful patient matching and MV setting in a model-based simulation as well as good discrimination to avoid mismatched patient pairs. The pairing process is based on model-based, patient-specific respiratory mechanics identified from measured data to provide useful information for guiding care. Specifically, the matching is performed via estimation of MV delivered tidal volume (mL/kg) based on patient-specific respiratory mechanics. This information can provide insights for the clinicians to evaluate the subsequent effects of Co-MV. In addition, it was also found that Co-MV patients with highly restrictive respiratory mechanics and obese patients must be performed with extra care.

    CONCLUSION: This approach allows clinicians to analyse patient matching in a virtual environment without patient risk. The approach is tested in simulation, but the results justify the necessary clinical validation in human trials.

    Matched MeSH terms: Respiration, Artificial
  13. Lee JWW, Chiew YS, Wang X, Tan CP, Mat Nor MB, Cove ME, et al.
    Comput Methods Programs Biomed, 2022 Feb;214:106577.
    PMID: 34936946 DOI: 10.1016/j.cmpb.2021.106577
    BACKGROUND AND OBJECTIVE: Mechanical ventilation is the primary form of care provided to respiratory failure patients. Limited guidelines and conflicting results from major clinical trials means selection of mechanical ventilation settings relies heavily on clinician experience and intuition. Determining optimal mechanical ventilation settings is therefore difficult, where non-optimal mechanical ventilation can be deleterious. To overcome these difficulties, this research proposes a model-based method to manage the wide range of possible mechanical ventilation settings, while also considering patient-specific conditions and responses.

    METHODS: This study shows the design and development of the "VENT" protocol, which integrates the single compartment linear lung model with clinical recommendations from landmark studies, to aid clinical decision-making in selecting mechanical ventilation settings. Using retrospective breath data from a cohort of 24 patients, 3,566 and 2,447 clinically implemented VC and PC settings were extracted respectively. Using this data, a VENT protocol application case study and clinical comparison is performed, and the prediction accuracy of the VENT protocol is validated against actual measured outcomes of pressure and volume.

    RESULTS: The study shows the VENT protocols' potential use in narrowing an overwhelming number of possible mechanical ventilation setting combinations by up to 99.9%. The comparison with retrospective clinical data showed that only 33% and 45% of clinician settings were approved by the VENT protocol. The unapproved settings were mainly due to exceeding clinical recommended settings. When utilising the single compartment model in the VENT protocol for forecasting peak pressures and tidal volumes, median [IQR] prediction error values of 0.75 [0.31 - 1.83] cmH2O and 0.55 [0.19 - 1.20] mL/kg were obtained.

    CONCLUSIONS: Comparing the proposed protocol with retrospective clinically implemented settings shows the protocol can prevent harmful mechanical ventilation setting combinations for which clinicians would be otherwise unaware. The VENT protocol warrants a more detailed clinical study to validate its potential usefulness in a clinical setting.

    Matched MeSH terms: Respiration, Artificial*
  14. Zainol NM, Damanhuri NS, Othman NA, Chiew YS, Nor MBM, Muhammad Z, et al.
    Comput Methods Programs Biomed, 2022 Jun;220:106835.
    PMID: 35512627 DOI: 10.1016/j.cmpb.2022.106835
    BACKGROUND AND OBJECTIVE: Mechanical ventilation (MV) provides breathing support for acute respiratory distress syndrome (ARDS) patients in the intensive care unit, but is difficult to optimize. Too much, or too little of pressure or volume support can cause further ventilator-induced lung injury, increasing length of MV, cost and mortality. Patient-specific respiratory mechanics can help optimize MV settings. However, model-based estimation of respiratory mechanics is less accurate when patient exhibit un-modeled spontaneous breathing (SB) efforts on top of ventilator support. This study aims to estimate and quantify SB efforts by reconstructing the unaltered passive mechanics airway pressure using NARX model.

    METHODS: Non-linear autoregressive (NARX) model is used to reconstruct missing airway pressure due to the presence of spontaneous breathing effort in mv patients. Then, the incidence of SB patients is estimated. The study uses a total of 10,000 breathing cycles collected from 10 ARDS patients from IIUM Hospital in Kuantan, Malaysia. In this study, there are 2 different ratios of training and validating methods. Firstly, the initial ratio used is 60:40 which indicates 600 breath cycles for training and remaining 400 breath cycles used for testing. Then, the ratio is varied using 70:30 ratio for training and testing data.

    RESULTS AND DISCUSSION: The mean residual error between original airway pressure and reconstructed airway pressure is denoted as the magnitude of effort. The median and interquartile range of mean residual error for both ratio are 0.0557 [0.0230 - 0.0874] and 0.0534 [0.0219 - 0.0870] respectively for all patients. The results also show that Patient 2 has the highest percentage of SB incidence and Patient 10 with the lowest percentage of SB incidence which proved that NARX model is able to perform for both higher incidence of SB effort or when there is a lack of SB effort.

    CONCLUSION: This model is able to produce the SB incidence rate based on 10% threshold. Hence, the proposed NARX model is potentially useful to estimate and identify patient-specific SB effort, which has the potential to further assist clinical decisions and optimize MV settings.

    Matched MeSH terms: Respiration, Artificial
  15. Lee JWW, Chiew YS, Wang X, Tan CP, Mat Nor MB, Damanhuri NS, et al.
    Ann Biomed Eng, 2021 Dec;49(12):3280-3295.
    PMID: 34435276 DOI: 10.1007/s10439-021-02854-4
    While lung protective mechanical ventilation (MV) guidelines have been developed to avoid ventilator-induced lung injury (VILI), a one-size-fits-all approach cannot benefit every individual patient. Hence, there is significant need for the ability to provide patient-specific MV settings to ensure safety, and optimise patient care. Model-based approaches enable patient-specific care by identifying time-varying patient-specific parameters, such as respiratory elastance, Ers, to capture inter- and intra-patient variability. However, patient-specific parameters evolve with time, as a function of disease progression and patient condition, making predicting their future values crucial for recommending patient-specific MV settings. This study employs stochastic modelling to predict future Ers values using retrospective patient data to develop and validate a model indicating future intra-patient variability of Ers. Cross validation results show stochastic modelling can predict future elastance ranges with 92.59 and 68.56% of predicted values within the 5-95% and the 25-75% range, respectively. This range can be used to ensure patients receive adequate minute ventilation should elastance rise and minimise the risk of VILI should elastance fall. The results show the potential for model-based protocols using stochastic model prediction of future Ers values to provide safe and patient-specific MV. These results warrant further investigation to validate its clinical utility.
    Matched MeSH terms: Respiration, Artificial/methods*
  16. Mokhtari M, Abd Ghaffar M, Usup G, Che Cob Z
    Biology (Basel), 2016;5(1).
    PMID: 26797647 DOI: 10.3390/biology5010007
    In mangrove ecosystems, litter fall accumulates as refractory organic carbon on the sediment surface and creates anoxic sediment layers. Fiddler crabs, through their burrowing activity, translocate oxygen into the anoxic layers and promote aerobic respiration, iron reduction and nitrification. In this study, the effects of four species of fiddler crabs (Uca triangularis, Uca rosea, Uca forcipata and Uca paradussumieri) on organic content, water content, porosity, redox potential and solid phase iron pools of mangrove sediments were investigated. In each crab's habitat, six cores down to 30 cm depth were taken from burrowed and non-burrowed sampling plots. Redox potential and oxidized iron pools were highest in surface sediment, while porosity, water and organic content were higher in deeper sediment. Reduced iron (Fe (II)) and redox potential were significantly different between burrowed and non-burrowed plots. Crab burrows extend the oxidized surface layer down to 4 cm depth and through the oxidation effect, reduce the organic content of sediments. The effects of burrows varied between the four species based on their shore location. The oxidation effect of burrows enhance the decomposition rate and stimulate iron reduction, which are processes that are expected to play an important role in biogeochemical properties of mangrove sediments.
    Matched MeSH terms: Cell Respiration
  17. Lim NL, Nordin MM, Cheah IG
    Med J Malaysia, 1994 Mar;49(1):4-11.
    PMID: 8057989
    An open prospective descriptive pilot study was undertaken to assess the effectiveness and experience in the use of ExosurfNeonatal, a synthetic surfactant, on preterm infants with respiratory distress syndrome in the neonatal intensive care unit of the Paediatric Institute. Of 10 infants treated, seven (70%) survived with no major handicap on discharge. The mean duration of ventilation for these survivors was 6.4 days, mean duration of oxygen therapy 9.1 days and mean length of hospital stay 38.3 days. A comparison was made with a retrospective analysis of 15 neonates who were admitted during an eight month period prior to the pilot study. These infants were mechanically ventilated for respiratory distress syndrome but not given surfactant therapy. Of these, nine (60%) survived (P > 0.1 compared to Exosurf treated infants), but two developed post haemorrhagic hydrocephalus requiring shunting. For these nine survivors, the mean duration of ventilator therapy was 12.6 days, the mean duration of oxygen therapy 20.7 days and the mean length of hospital stay 70.8 days. This difference was statistically significant (P < 0.05). Of the three ExosurfNeonatal treated infants who died, two were extremely premature. Both developed grade IV periventricular haemorrhage while the third infant was admitted in shock and hypothermia and died from intraventricular haemorrhage and pulmonary interstitial emphysema. Except for the very sick and extremely premature infants, surfactant therapy is useful in reducing the mortality and morbidity of premature infants with respiratory distress syndrome in our neonatal intensive unit.
    Matched MeSH terms: Respiration, Artificial/statistics & numerical data
  18. Ng DC, Tan KK, Liew CH, Low YW, Chin L, Jamil MB, et al.
    Pediatr Int, 2023;65(1):e15565.
    PMID: 37368506 DOI: 10.1111/ped.15565
    BACKGROUND: This study aimed to describe the clinical characteristics and severity of young infants hospitalized with COVID-19 and study the relationship between breastfeeding and maternal COVID-19 vaccination on the severity of COVID-19.

    METHODS: A retrospective, observational study was performed among infants aged 6 months and below hospitalized for COVID-19 in a tertiary state hospital in Malaysia between February 1 and April 30, 2022. The primary outcome was "serious disease," defined as pneumonia requiring respiratory support or dehydration with warning signs. Multivariate logistic regression was used to determine independent predictors for serious disease.

    RESULTS: A total of 102 infants were included in the study; 53.9% were males with a median age of 11 weeks (interquartile range: 5-20 weeks). Sixteen patients (15.7%) had pre-existing comorbidities, including preterm birth. Fever was the most common presenting symptom (82.4%), followed by cough (53.9%), and rhinorrhea (31.4%). Forty-one infants (40.2%) presented with serious disease, warranting either respiratory support or intravenous fluid therapy for dehydration. Recent maternal COVID-19 vaccination was associated with a reduced risk of serious disease on univariate analysis but was not significant after multivariate adjustment (adjusted odds ratio [aOR] 0.39; 95% CI: 0.14-1.11; p = 0.08). Exclusive breastfeeding was protective against serious COVID-19 in young infants, independent of other confounding factors (aOR 0.21, 95% CI: 0.06-0.71; p = 0.01).

    CONCLUSION: COVID-19 is a serious disease with non-specific clinical manifestations in young infants. Exclusive breastfeeding could play an important protective role.

    Matched MeSH terms: Respiration, Artificial
  19. Ahmad AA, Wahab NA, Yeo CW, Oh SJWY, Chen HC
    J Vet Med Sci, 2019 Jan 08;81(1):48-52.
    PMID: 30429427 DOI: 10.1292/jvms.18-0297
    Forty rescued common palm civets were anesthetized. Twenty animals received intramuscular injections of alfaxalone 5 mg/kg and medetomidine 0.05 mg/kg (A-M group), whereas twenty animals received 5 mg/kg of tiletamine and zolazepam (T-Z group). The A-M group was reversed with atipamazole 0.25 mg/kg. There were no significant differences in the time from anesthetic injection to induction and intubation between the A-M and T-Z groups. The time from the injection of reversal in the A-M group and the time from cessation of isoflurane in the T-Z group to extubation, first response to recovery and ambulation were longer (P<0.05) in the T-Z group. The T-Z group recorded lower (P<0.05) rectal temperatures compared to the A-M group. This study showed that both drug combinations can be used effectively for the immobilization of civets. The A-M combination provided better anesthetic depth, but with higher incidence of bradycardia and hypoxemia. The recovery time was reduced significantly as atipamezole was used as a reversal agent in the A-M combination.
    Matched MeSH terms: Respiration/drug effects
  20. Malik AA, Rajandram R, Tah PC, Hakumat-Rai VR, Chin KF
    J Crit Care, 2016 Apr;32:182-8.
    PMID: 26777745 DOI: 10.1016/j.jcrc.2015.12.008
    Gut failure is a common condition in critically ill patients in the intensive care unit (ICU). Enteral feeding is usually the first line of choice for nutrition support in critically ill patients. However, enteral feeding has its own set of complications such as alterations in gut transit time and composition of gut eco-culture. The primary aim of this study was to investigate the effect of microbial cell preparation on the return of gut function, white blood cell count, C-reactive protein levels, number of days on mechanical ventilation, and length of stay in ICU. A consecutive cohort of 60 patients admitted to the ICU in University Malaya Medical Centre requiring enteral feeding were prospectively randomized to receive either treatment (n = 30) or placebo (n = 30). Patients receiving enteral feeding supplemented with a course of treatment achieved a faster return of gut function and required shorter duration of mechanical ventilation and shorter length of stay in the ICU. However, inflammatory markers did not show any significant change in the pretreatment and posttreatment groups. Overall, it can be concluded that microbial cell preparation enhances gut function and the overall clinical outcome of critically ill patients receiving enteral feeding in the ICU.
    Matched MeSH terms: Respiration, Artificial/statistics & numerical data
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links