Displaying publications 21 - 33 of 33 in total

Abstract:
Sort:
  1. Chandrika, M., Maimunah, M., Zainon, M.N., Son, R.
    MyJurnal
    Legislation concerning the safety assessment and labelling of foodstuffs has been implemented in many countries. Consequential to a number of cases of food adulteration reported globally, a fast and reliable detection method for the food traceability is required in ensuring effective implementation of food legislation in a country. In this study, PCR-RFLP technique based on cyt b gene has been tested for its suitability for these purposes. This method combines the use of a pair of universal primer that amplifies a 359 bp fragment on the cyt b gene from meat muscle DNA and restriction enzyme analysis. Analysis of experimental beef frankfurter, minced beef, pork frankfurter and pork cocktail samples demonstrated the suitability of the assay for the detection of the beef (Bos taurus) and pork (Sus scrofa), but not applicable for some processed food, particularly detection of mackerel (Rasterelliger brachysoma), sardine (Saedinella Fimbriata) and tuna (Thunnus tonggol) origin in canned food. Commercial frauds through species mislabelling or misdescribed were not detected. The assay is demonstrated applicable for routine analysis of meat traceability of foodstuffs and legislation purposes, if sufficient availability of detectable mtDNA in the foodstuffs is ensured.
    Matched MeSH terms: Restriction Mapping
  2. Okuda S, Prince JP, Davis RE, Dally EL, Lee IM, Mogen B, et al.
    Plant Dis, 1997 Mar;81(3):301-305.
    PMID: 30861775 DOI: 10.1094/PDIS.1997.81.3.301
    Phytoplasmas (mycoplasmalike organisms, MLOs) associated with mitsuba (Japanese hone-wort) witches'-broom (JHW), garland chrysanthemum witches'-broom (GCW), eggplant dwarf (ED), tomato yellows (TY), marguerite yellows (MY), gentian witches'-broom (GW), and tsu-wabuki witches'-broom (TW) in Japan were investigated by polymerase chain reaction (PCR) amplification of DNA and restriction enzyme analysis of PCR products. The phytoplasmas could be separated into two groups, one containing strains JHW, GCW, ED, TY, and MY, and the other containing strains GW and TW, corresponding to two groups previously recognized on the basis of transmission by Macrosteles striifrons and Scleroracus flavopictus, respectively. The strains transmitted by M. striifrons were classified in 16S rRNA gene group 16SrI, which contains aster yellows and related phytoplasma strains. Strains GW and TW were classified in group 16SrIII, which contains phytoplasmas associated with peach X-disease, clover yellow edge, and related phytoplasmas. Digestion of amplified 16S rDNA with HpaII indicated that strains GW and TW were affiliated with subgroup 16SrIII-B, which contains clover yellow edge phytoplasma. All seven strains were distinguished from other phytoplasmas, including those associated with clover proliferation, ash yellows, elm yellows, and beet leafhopper-transmitted virescence in North America, and Malaysian periwinkle yellows and sweet potato witches'-broom in Asia.
    Matched MeSH terms: Restriction Mapping
  3. Mahalingam S, Cheong YM, Kan S, Yassin RM, Vadivelu J, Pang T
    J Clin Microbiol, 1994 Dec;32(12):2975-9.
    PMID: 7883885
    Isolates of Vibrio cholerae O1 El Tor from two well-defined cholera outbreaks in Malaysia were analyzed by using pulsed-field gel electrophoresis (PFGE). Isolates from sporadic cases occurring during the same time period were also studied. Digestion of chromosomal DNA from these isolates of V. cholerae O1 with restriction endonucleases NotI (5'-GCGGCCGC-3') and SfiI (5'-GGCCNNNN-3'), followed by PFGE, produced restriction endonuclease analysis (REA) patterns consisting of 13 to 24 bands (ranging in size from 46 to 398 kbp). Analysis of the REA patterns generated by PFGE after digestion with NotI and SfiI suggested the clonal nature and close genetic identity of the isolates obtained during each of the two outbreaks (Dice coefficient, 0.93 to 1.0). Although they had very similar REA patterns, the two outbreak clones were not identical. Isolates of V. cholerae O1 from sporadic cases, on the other hand, appeared to be much more heterogeneous (five different REA patterns detected in the five isolates tested; Dice coefficient, 0.31 to 0.81) than those obtained during the two outbreaks. We conclude that PFGE of V. cholerae O1 chromosomal DNA digested with infrequently cutting restriction endonucleases is a useful method for molecular typing of V. cholerae isolates for epidemiological purposes.
    Matched MeSH terms: Restriction Mapping
  4. Ahmad MK, Tabana YM, Ahmed MA, Sandai DA, Mohamed R, Ismail IS, et al.
    Malays J Med Sci, 2017 Dec;24(6):29-38.
    PMID: 29379384 DOI: 10.21315/mjms2017.24.6.4
    Background: A norovirus maintains its viability, infectivity and virulence by its ability to replicate. However, the biological mechanisms of the process remain to be explored. In this work, the NanoLuc™ Luciferase gene was used to develop a reporter-tagged replicon system to study norovirus replication.

    Methods: The NanoLuc™ Luciferase reporter protein was engineered to be expressed as a fusion protein for MNV-1 minor capsid protein, VP2. The foot-and-mouth disease virus 2A (FMDV2A) sequence was inserted between the 3'end of the reporter gene and the VP2 start sequence to allow co-translational 'cleavage' of fusion proteins during intracellular transcript expression. Amplification of the fusion gene was performed using a series of standard and overlapping polymerase chain reactions. The resulting amplicon was then cloned into three readily available backbones of MNV-1 cDNA clones.

    Results: Restriction enzyme analysis indicated that the NanoLucTM Luciferase gene was successfully inserted into the parental MNV-1 cDNA clone. The insertion was further confirmed by using DNA sequencing.

    Conclusion: NanoLuc™ Luciferase-tagged MNV-1 cDNA clones were successfully engineered. Such clones can be exploited to develop robust experimental assays for in vitro assessments of viral RNA replication.

    Matched MeSH terms: Restriction Mapping
  5. Yeo AS, Rathakrishnan A, Wang SM, Ponnampalavanar S, Manikam R, Sathar J, et al.
    Biomed Res Int, 2015;2015:420867.
    PMID: 25815314 DOI: 10.1155/2015/420867
    Dengue virus infection is a common tropical disease which often occurs without being detected. These asymptomatic cases provide information in relation to the manifestation of immunological aspects. In this study, we developed an ELISA method to compare neutralizing effects of dengue prM and E antibodies between dengue patients and their asymptomatic household members. Recombinant D2 premembrane (prM) was constructed, cloned, and tested for antigenicity. The recombinant protein was purified and tested with controls by using an indirect ELISA method. Positive dengue serum samples with their asymptomatic pair were then carried out onto the developed ELISA. In addition, commercially available recombinant envelope (E) protein was used to develop an ELISA which was tested with the same set of serum samples in the prM ELISA. Asymptomatic individuals showed preexisting heterotypic neutralizing antibodies. The recombinant prM was antigenically reactive in the developed ELISA. Dengue patients had higher prM and E antibodies compared to their household members. Our study highlights the neutralizing antibodies levels with respect to dengue prM and E between dengue patients and asymptomatic individuals.
    Matched MeSH terms: Restriction Mapping
  6. Cabauatan PQ, Melcher U, Ishikawa K, Omura T, Hibino H, Koganezawa H, et al.
    J Gen Virol, 1999 Aug;80 ( Pt 8):2229-37.
    PMID: 10466823
    The DNA of three biological variants, G1, Ic and G2, which originated from the same greenhouse isolate of rice tungro bacilliform virus (RTBV) at the International Rice Research Institute (IRRI), was cloned and sequenced. Comparison of the sequences revealed small differences in genome sizes. The variants were between 95 and 99% identical at the nucleotide and amino acid levels. Alignment of the three genome sequences with those of three published RTBV sequences (Phi-1, Phi-2 and Phi-3) revealed numerous nucleotide substitutions and some insertions and deletions. The published RTBV sequences originated from the same greenhouse isolate at IRRI 20, 11 and 9 years ago. All open reading frames (ORFs) and known functional domains were conserved across the six variants. The cysteine-rich region of ORF3 showed the greatest variation. When the six DNA sequences from IRRI were compared with that of an isolate from Malaysia (Serdang), similar changes were observed in the cysteine-rich region in addition to other nucleotide substitutions and deletions across the genome. The aligned nucleotide sequences of the IRRI variants and Serdang were used to analyse phylogenetic relationships by the bootstrapped parsimony, distance and maximum-likelihood methods. The isolates clustered in three groups: Serdang alone; Ic and G1; and Phi-1, Phi-2, Phi-3 and G2. The distribution of phylogenetically informative residues in the IRRI sequences shared with the Serdang sequence and the differing tree topologies for segments of the genome suggested that recombination, as well as substitutions and insertions or deletions, has played a role in the evolution of RTBV variants. The significance and implications of these evolutionary forces are discussed in comparison with badnaviruses and caulimoviruses.
    Matched MeSH terms: Restriction Mapping
  7. Aini I, Shih LM, Castro AE, Zee YC
    J. Wildl. Dis., 1993 Apr;29(2):196-202.
    PMID: 8387609
    Field isolates of herpesviruses recovered from falcon, pigeon, and psittacine birds were compared by restriction endonuclease (RE) analysis using four separate enzymes. Pigeon and falcon herpesviruses had strikingly similar DNA cleavage patterns, while DNA cleavage pattern of virus isolates from a double-yellow headed Amazon and an African grey parrot had different genomic patterns to both the pigeon and falcon herpesviruses. These findings support the field observations that pigeon herpesvirus causes a fatal herpesviral infection in the livers of pigeon-eating falcons.
    Matched MeSH terms: Restriction Mapping
  8. Chang SP, Kramer KJ, Yamaga KM, Kato A, Case SE, Siddiqui WA
    Exp Parasitol, 1988 Oct;67(1):1-11.
    PMID: 3049134
    The gene encoding the 195,000-Da major merozoite surface antigen (gp195) of the FUP (Uganda-Palo Alto) isolate of Plasmodium falciparum, a strain widely used for monkey vaccination experiments, has been cloned and sequenced. The translated amino acid sequence of the FUP gp195 protein is closely related to the sequences of corresponding proteins of the CAMP (Malaysia) and MAD-20 (Papua New Guinea) isolates and more distantly related to those of the Wellcome (West Africa) and K1 (Thailand) isolates, supporting the proposed allelic dimorphism of gp195 within the parasite population. The prevalence of dimorphic sequences within the gp195 protein suggests that many gp195 epitopes would be group-specific. Despite the extensive differences in amino acid sequence between gp195 proteins of these two groups, the hydropathy profiles of proteins representative of both groups are very similar. The conservation of overall secondary structure shown by the hydropathy profile comparison indicates that gp195 proteins of the various P. falciparum isolates are functionally equivalent. This information on the primary structure of the FUP gp195 protein will enable us to evaluate the possible roles of conserved, group-specific and variable epitopes in immunity to the blood stage of the malaria parasite.
    Matched MeSH terms: Restriction Mapping
  9. Romstad A, Gasser RB, Nansen P, Polderman AM, Chilton NB
    Int J Parasitol, 1998 Apr;28(4):611-5.
    PMID: 9602384
    The nucleotide sequences of the second internal transcribed spacer of rDNA were determined for adult worms of Necator americanus originating from Togo (Africa) and Sarawak (Malaysia). The length of the sequences of specimens from Togo (325 bp) were shorter than those from Sarawak (327 bp). There were six fixed genetic differences in the aligned sequences of N. americanus from Sarawak and Togo, excluding one or two polymorphic sites within the sequence of N. americanus from each geographical region. These findings suggest that there is either population variation in the sequence of N. americanus, or that N. americanus from the two countries may represent genetically distinct but morphologically similar (i.e. cryptic) species, however, comparison of the sequence differences among other hookworm species supports the latter conclusion.
    Matched MeSH terms: Restriction Mapping
  10. Azuma H, Okamoto M, Oku Y, Kamiya M
    Parasitol Res, 1995;81(2):103-8.
    PMID: 7731915
    The intraspecific variation of four laboratory-reared isolates of Taenia taeniaformis the SRN and KRN isolates from Norway rats, Rattus norvegicus, captured in Japan and Malaysia, respectively; the BMM isolated from a house mouse, Mus musculus, captured in Belgium; and the ACR isolate from a gray red-backed vole, Clethrionomys rufocanus bedfordiae, captured in Japan was examined by various criteria. Eggs of each of the four isolates were orally inoculated into several species of intermediate host. They were most infective to the rodent species from which the original metacestode of each isolate had been isolated in the field, and only the ACR isolate was infective to the gray red-backed vole. Although little difference was found between the SRN, KRN, and BMM isolates by the other criteria, including the morphology of rostellar hooks, the protein composition of the metacestode, and restriction endonuclease analysis of DNA, the ACR isolate was clearly different from the others. It was considered that the ACR isolate was independent as a strain distinct from the other three isolates.
    Matched MeSH terms: Restriction Mapping
  11. Zamri-Saad M, Roshidah I, al-Ajeeli K
    Aust. Vet. J., 1994 Jul;71(7):218-20.
    PMID: 7945102
    Matched MeSH terms: Restriction Mapping
  12. Abubakar MB, Aini I, Omar AR, Hair-Bejo M
    J Biomed Biotechnol, 2011;2011:414198.
    PMID: 21541235 DOI: 10.1155/2011/414198
    Avian influenza (AI) is a highly contagious and rapidly evolving pathogen of major concern to the poultry industry and human health. Rapid and accurate detection of avian influenza virus is a necessary tool for control of outbreaks and surveillance. The AI virus A/Chicken/Malaysia/5858/2004 (H5N1) was used as a template to produce DNA clones of the full-length NS1 genes via reverse transcriptase synthesis of cDNA by PCR amplification of the NS1 region. Products were cloned into pCR2.0 TOPO TA plasmid and subsequently subcloned into pPICZαA vector to construct a recombinant plasmid. Recombinant plasmid designated as pPICZαA-NS1 gene was confirmed by PCR colony screening, restriction enzyme digestion, and nucleotide sequence analysis. The recombinant plasmid was transformed into Pichia pastoris GS115 strain by electroporation, and expressed protein was identified by SDS-PAGE and western blotting. A recombinant protein of approximately ~28 kDa was produced. The expressed protein was able to bind a rabbit polyclonal antibody of nonstructural protein (NS1) avian influenza virus H5N1. The result of the western blotting and solid-phase ELISA assay using H5N1 antibody indicated that the recombinant protein produced retained its antigenicity. This further indicates that Pichia pastoris could be an efficient expression system for a avian influenza virus nonstructural (NS1).
    Matched MeSH terms: Restriction Mapping
  13. Kim LH, Peh SC, Poppema S
    Int J Cancer, 2003 Nov 1;107(2):250-5.
    PMID: 12949802
    Isolation of single cells permits analysis of DNA or RNA from individual cells among heterogeneous populations. This technique is particularly useful in the study of classical Hodgkin's lymphoma (cHL) due to the scarcity of H/RS tumor cells among large numbers of reactive leukocytes. In a previous study, we found a high frequency of dual LMP-1 variant (concurrent presence of deleted and nondeleted variants) in cHL from whole-tissue sections. For the present study, we applied a single-cell isolation technique to determine the LMP-1 oncogene variant in EBV-associated H/RS cells. Five cases of EBV-infected cHL, containing nondeleted (n=1), deleted (n=1) and dual infection (n=3) based on whole-tissue section analysis, were selected for study. Paraffin-embedded tissue sections were stained with antibody to LMP-1 and positively stained H/RS cells isolated using a semiautomated micromanipulator. Each isolated single cell was subjected to PCR for amplification of the LMP-1 gene flanking the 30 bp deletion region and Xho1 restriction site. Cases with either nondeleted variant or the deleted variant showed similar LMP-1 variant expression in isolated single H/RS cells. However, 1 of the 3 cases with dual variants showed only the deleted variant in H/RS cells. The other 2 cases showed mixed patterns of deleted, nondeleted and dual LMP-1 variants in isolated single H/RS cells. All cases showed loss of the Xho1 restriction site, with the exception of the case with nondeleted LMP-1. Results of single-H/RS cell analysis of the Xho1 restriction site concur with those of whole-tissue section amplification. A mixed pattern of LMP-1 variants was observed in isolated H/RS cells, and it is speculated that this is due to the accumulation of mutation and deletion events.
    Matched MeSH terms: Restriction Mapping
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links