Displaying publications 21 - 40 of 49 in total

Abstract:
Sort:
  1. Muthiah YD, Lee WL, Teh LK, Ong CE, Salleh MZ, Ismail R
    Clin Chim Acta, 2004 Nov;349(1-2):191-8.
    PMID: 15469873 DOI: 10.1016/j.cccn.2004.06.024
    BACKGROUND: Cytochrome P450 (CYP) 2C8 is a principle enzyme responsible for the metabolism of many clinically important drugs as well as endogenous compounds such as arachidonic acid. The enzyme is genetically polymorphic but a simple method is not available to study its genetic polymorphism. We developed and optimized a variant-specific PCR techniques to detect CYP2C8*2, CYP2C8*3 and CYP2C8*4.
    METHOD: Genomic DNA was extracted from blood using standard extraction methods. A two-step PCR method was developed to detect simultaneously three CYP2C8 variants. In the first PCR (PCR1), specific regions from exons 3, 5 and 8 of the CYP2C8 gene were amplified. The products were used as templates in parallel alleles-specific PCR (PCR2). This method was tested against DNA samples obtained from 57 healthy Malaysian volunteers.
    RESULT: The bands of interest were successfully amplified. This method showed specific and reproducible results when tested on healthy volunteers. DNA sequencing further confirmed genotype results obtained from current method.
    CONCLUSION: We have successfully developed and optimized a multiplex PCR method suitable for use in population studies of CYP2C8 polymorphism.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods*
  2. Kong YY, Thay CH, Tin TC, Devi S
    J Virol Methods, 2006 Dec;138(1-2):123-30.
    PMID: 17000012 DOI: 10.1016/j.jviromet.2006.08.003
    The use of the polymerase chain reaction (PCR) in molecular diagnosis is now accepted worldwide and has become an essential tool in the research laboratory. In the laboratory, a rapid detection, serotyping and quantitation, one-step real-time RT-PCR assay was developed for dengue virus using TaqMan probes. In this assay, a set of forward and reverse primers were designed targeting the serotype conserved region at the NS5 gene, at the same time flanking a variable region for all four serotypes which were used to design the serotype-specific TaqMan probes. This multiplex one-step RT-PCR assay was evaluated using 376 samples collected during the year 2003. These groups included RNA from prototype dengue virus (1-4), RNA from acute serum from which dengue virus was isolated, RNA from tissue culture supernatants of dengue virus isolated, RNA from seronegative acute samples (which were culture and IgM negative) and RNA from samples of dengue IgM positive sera. The specificity of this assay was also evaluated using a panel of sera which were positive for other common tropical disease agents including herpes simplex virus, cytomegalovirus, measles virus, varicella-zoster virus, rubella virus, mumps virus, WWF, West Nile virus, Japanese encephalitis virus, S. typhi, Legionella, Leptospira, Chlamydia, and Mycoplasma. The sensitivity, specificity and real-time PCR efficiency of this assay were 89.54%, 100% and 91.5%, respectively.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods*
  3. Kho CL, Mohd-Azmi ML, Arshad SS, Yusoff K
    J Virol Methods, 2000 Apr;86(1):71-83.
    PMID: 10713378
    A sensitive and specific RT-nested PCR coupled with an ELISA detection system for detecting Newcastle disease virus is described. Two nested pairs of primer which were highly specific to all the three different pathotypes of NDV were designed from the consensus fusion gene sequence. No cross-reactions with other avian infectious agents such as infectious bronchitis virus, infectious bursal disease virus, influenza virus, and fowl pox virus were observed. Based on agarose electrophoresis detection, the RT-nested PCR was about 100 times more sensitive compared to that of a non-nested RT-PCR. To facilitate the detection of the PCR product, an ELISA detection method was then developed to detect the amplified PCR products and it was shown to be ten times more sensitive than gel electrophoresis. The efficacy of the nested PCR-ELISA was also compared with the conventional NDV detection method (HA test) and non-nested RT-PCR by testing against a total of 35 tissue specimens collected from ND-symptomatic chickens. The RT-nested PCR ELISA found NDV positive in 21 (60%) tissue specimens, while only eight (22.9%) and two (5.7%) out of 35 tissue specimens were tested NDV positive by both the non-nested RT-PCR and conventional HA test, respectively. Due to its high sensitivity for the detection of NDV from tissue specimens, this PCR-ELISA based diagnostic test may be useful for screening large number of samples.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods*
  4. Ong WT, Omar AR, Ideris A, Hassan SS
    J Virol Methods, 2007 Sep;144(1-2):57-64.
    PMID: 17512062
    Avian influenza viruses are pathogens of economical and public health concerns. However, infections caused by low pathogenic avian influenza particularly H9N2 subtype are not associated with clear clinical features. Hence, rapid detection and subtyping of the virus will enable immediate measures to be implemented for preventing widespread transmission. This study highlights the development of a multiplex real-time reverse-transcriptase polymerase chain reaction (RRT-PCR) assay using SYBR Green 1 chemistry for universal detection of avian influenza viruses and specific subtyping of H9N2 isolates based on melting temperatures (T(m)) discriminations. Three melting peaks generated simultaneously at temperatures 85.2+/-1.0, 81.9+/-0.9 and 78.7+/-0.9 degrees C represent NP, H9 and N2 gene products, respectively. The RRT-PCR assay was about 10-100-fold more sensitive when compared to the conventional RT-PCR method using reference H9N2 isolate. In addition, the RRT-PCR assay was 100% sensitive as well as 92% specific according to the standard virus isolation method in detecting experimentally infected specific-pathogen-free (SPF) chickens.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods*
  5. Bidawid S, Farber JM, Sattar SA
    J Virol Methods, 2000 Aug;88(2):175-85.
    PMID: 10960705
    Immunomagnetic beads-PCR (IM-PCR), positively-charged virosorb filters (F), or a combination of both methods (F-IM-PCR) were used to capture, concentrate and rapidly detect hepatitis A virus (HAV) in samples of lettuce and strawberries experimentally contaminated. Direct reverse transcriptase-polymerase chain reaction (RT-PCR) amplification of the collected HAV-beads complex showed a detection limit of 0.5 plaque forming units (PFU) of the virus present in 1-ml of wash solution from the produce, which was several hundred-fold more sensitive than that demonstrated by RT-PCR. In separate trials, virus-containing wash solutions from the produce were passed through the filters and the captured virus was eluted with 10 ml volumes of 1% beef extract. Of the 62% filter-captured HAV, an average of 34.8% was eluted by the 1% beef extract. PCR amplification of 2 microl from this eluate failed to produce a clear positive band signal. As little as 10 PFU, present on each piece of the lettuce or strawberry, was detectable by the F-IM-PCR, which was almost 20 times less sensitive than the detection limit of 0.5 PFU by the IM-PCR. However, considering the large volumes (< or =50 ml) used in the F-IM-PCR, the sensitivity of detection could be much greater than that of the IM-PCR, which was restricted to < or =20 ml volumes. These data indicate that the F-IM-PCR method provides the potential for a greater sensitivity of detection than the IM-PCR, since low levels of virus could be detected from large volumes of sample than possible by the IM-PCR method. Although positively-charged filters captured a greater amount of virus than both the IM-PCR and F-IM-PCR methods, direct PCR amplification from beef extract eluates was not successful in detecting HAV from produce.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods
  6. Petz LN, Turell MJ, Padilla S, Long LS, Reinbold-Wasson DD, Smith DR, et al.
    Am J Trop Med Hyg, 2014 Oct;91(4):666-71.
    PMID: 25114013 DOI: 10.4269/ajtmh.13-0218
    Tembusu virus (TMUV) is an important emerging arthropod-borne virus that may cause encephalitis in humans and has been isolated in regions of southeast Asia, including Malaysia, Thailand, and China. Currently, detection and identification of TMUV are limited to research laboratories, because quantitative rapid diagnostic assays for the virus do not exist. We describe the development of sensitive and specific conventional and real-time quantitative reverse transcription polymerase chain reaction assays for detecting TMUV RNA in infected cell culture supernatant and Culex tarsalis mosquitoes. We used this assay to document the replication of TMUV in Cx. tarsalis, where titers increased 1,000-fold 5 days after inoculation. These assays resulted in the detection of virus-specific RNA in the presence of copurified mosquito nucleic acids. The use of these rapid diagnostic assays may have future applications for field pathogen surveillance and may assist in early detection, diagnosis, and control of the associated arthropod-borne pathogens.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods*
  7. Harun MS, Kuan CO, Selvarajah GT, Wei TS, Arshad SS, Hair Bejo M, et al.
    Virol J, 2013;10:329.
    PMID: 24209771 DOI: 10.1186/1743-422X-10-329
    BACKGROUND:
    Feline Infectious Peritonitis (FIP) is a lethal systemic disease, caused by the FIP Virus (FIPV); a virulent mutant of Feline Enteric Coronavirus (FECV). Currently, the viruses virulence determinants and host gene expressions during FIPV infection are not fully understood.

    METHODS:
    RNA sequencing of Crandell Rees Feline Kidney (CRFK) cells, infected with FIPV strain 79-1146 at 3 hours post infection (h.p.i), were sequenced using the Illumina next generation sequencing approach. Bioinformatic's analysis, based on Felis catus 2X annotated shotgun reference genome, using CLC bio Genome Workbench mapped both control and infected cell reads to 18899 genes out of 19046 annotated genes. Kal's Z test statistical analysis was used to analyse the differentially expressed genes from the infected CRFK cells. Real time RT-qPCR was developed for further transcriptional profiling of three genes (PD-1, PD-L1 and A3H) in infected CRFK cells and Peripheral Blood Mononuclear Cells (PBMCs) from healthy and FIP-diseased cats.

    RESULTS:
    Based on Kal's Z-test, with False Discovery Rate (FDR) <0.05 and >1.99 fold change on gene expressions, a total of 61 genes were differentially expressed by both samples, where 44 genes were up-regulated and the remainder were down-regulated. Most genes were closely clustered together, suggesting a homogeneous expression. The majority of the genes that were significantly regulated, were those associated with monocytes-macrophage and Th1 cell functions, and the regulation of apoptosis. Real time RT-qPCR developed focusing on 2 up-regulated genes (PD-L1 and A3H) together with an apoptosis associated gene PD-1 expressions in FIPV infected CRFK cells and in PBMCs from healthy and FIP diagnosed cats produced concordant results with transcriptome data.

    CONCLUSION:
    The possible roles of these genes, and their importance in feline coronaviruses infection, are discussed.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods
  8. Tamin A, Rota PA
    Dev Biol (Basel), 2013;135:139-45.
    PMID: 23689891 DOI: 10.1159/000189236
    Hendra virus (HeV) and Nipah virus (NiV) are the causative agents of emerging transboundary animal disease in pigs and horses. They also cause fatal disease in humans. NiV has a case fatality rate of 40 - 100%. In the initial NiV outbreak in Malaysia in 1999, about 1.1 million pigs had to be culled. The economic impact was estimated to be approximately US$450 million. Worldwide, HeV has caused more than 60 deaths in horses with 7 human cases and 4 deaths. Since the initial outbreak, HeV spillovers from Pteropus bats to horses and humans continue. This article presents a brief review on the currently available diagnostic methods for henipavirus infections, including advances achieved since the initial outbreak, and a gap analysis of areas needing improvement.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods
  9. Loh HS, Mohd-Azmi ML
    Acta Virol., 2009;53(4):261-9.
    PMID: 19941390
    One-step real-time RT-PCR assay was developed for quantification of the immediate-early (IE), namely IE1 and IE2 transcripts of Rat cytomegalovirus (RCMV), strain ALL-03 in rat embryonic fibroblast cells (REF). This in-house SYBR Green I based RT-PCR was shown to have higher amplification efficiency and detection limit as compared to a commercially available real-time RT-PCR kit in quantifying these two transcripts. The quantification histogram revealed the divergence of transcription activities of the two IE genes. The IE1 transcript had a concentration peak at 7 hrs post infection (p.i.), whereas IE2 transcript at 20 hrs p.i. Regulation of IE expression is critical for determination, whether the infection is going to be abortive, lytic or latent. Therefore, this in-house developed quantitative RT-PCR assay offers an alternative for diagnosis and monitoring of the acute cytomegalovirus (CMV) infection directed at IE transcript detection.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods*
  10. Chaharaein B, Omar AR, Aini I, Yusoff K, Hassan SS
    Microbiol Res, 2009;164(2):174-9.
    PMID: 17336046
    Subtype-specific multiplex reverse transcription-polymerase chain reaction (RT-PCR) was developed to simultaneously detect three subtypes (H5, H7 and H9) of avian influenza virus (AIV) type A. The sensitivity of the multiplex RT-PCR was evaluated and compared to that of RT-PCR-enzyme-linked immunosorbent assay (ELISA) and conventional RT-PCR. While the sensitivity of the multiplex RT-PCR is as sensitive as the conventional RT-PCR, it is 10 times less sensitive than RT-PCR-ELISA. The multiplex RT-PCR is also as sensitive as the virus isolation method in detecting H9N2 from tracheal samples collected at day 3 and 5 post inoculation. Hence, the developed multiplex RT-PCR assay is a rapid, sensitive and specific assay for detecting of AIV subtypes.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods*
  11. Yee SY, Fong NY, Fong GT, Tak OJ, Hui GT, Su Ming Y
    Int J Environ Health Res, 2006 Feb;16(1):59-68.
    PMID: 16507481
    Male-specific RNA coliphages (FRNA) have been recommended as indicators of fecal contamination and of the virological quality of water. In this study, 16 river water and 183 animal fecal samples were examined for the presence of FRNA coliphages by a plaque assay using Salmonella typhimurium WG49 and WG25 to differentiate between male-specific and somatic phages, a RNase spot test to differentiate between DNA and RNA phages and a reverse transcriptase-polymerase chain reaction (RT-PCR) for the specific identification of FRNA phages. The overall recovery rate for F-specific coliphages was 8.0%. (4.4% from animal fecal matter and 50% from river water samples). Plaque counts were generally low (< 6 x 10(2) pfu per g feces or ml water), with FRNA (6.5%) and Male-specific DNA coliphages (FDNA) (7.0%) phages occurring at almost equal frequencies. The RT-PCR was positive in all FRNA plaques and was able to identify FRNA phages in mixed populations of FRNA, FDNA and somatic phages.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods
  12. Boyle DB, Taylor T, Cardoso M
    Aust. Vet. J., 2004 Jul;82(7):421-5.
    PMID: 15354851
    OBJECTIVE: To evaluate and implement rapid molecular diagnostic techniques for the detection of foot and mouth disease virus (FMDV) suitable for use in Australia.

    DESIGN: Two PCR TaqMan assays targeted to the FMDV internal ribosome entry site or the 3D polymerase coding region for the rapid detection of FMDV were evaluated using non-infectious materials to determine the test most appropriate for implementation as part of Australia's national preparedness for the rapid detection and diagnosis of FMD outbreaks.

    RESULTS: Two published tests (PCR TaqMan assays targeted to the FMDV IRES region or the FMDV 3D polymerase coding region) were evaluated for their ability to detect FMDV genetic material in non-infectious FMDV ELISA antigen stocks held at Australian Animal Health Laboratory. Both tests were able to detect FMDV genetic material from strains O1 Manisa, O-3039, A22, A24, A Malaysia, C, Asia 1 and SAT 1, 2 and 3. With the exception of Asia 1, the TaqMan assay targeted to the FMD 3D polymerase coding region had Ct values equal to or lower than for the TaqMan assay targeted to the IRES region suggesting that this test may provide broader serotype detection and sensitivity. However, the TaqMan assay directed to the FMDV IRES is the only one to date to have undergone substantial evaluation using clinical samples collected during an outbreak. The greatest differences observed were for O-3039, SAT 1, and 3.

    CONCLUSION: Given the ease of setting up both tests, AAHL currently runs both tests on highly suspect FMD investigations to provide independent confirmation of the absence of FMDV because the tests are focused on two independent regions of the FMDV genome. These tests add substantially to Australia's preparedness for FMD diagnosis complementing the already well-established virus isolation and antigen capture ELISA tests for index case diagnosis of FMD in Australia.

    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods
  13. Thanh TT, Anh NT, Tham NT, Van HM, Sabanathan S, Qui PT, et al.
    Virol J, 2015 Jun 09;12:85.
    PMID: 26050791 DOI: 10.1186/s12985-015-0316-2
    BACKGROUND: Hand foot and mouth disease (HFMD) is a disease of public health importance across the Asia-Pacific region. The disease is caused by enteroviruses (EVs), in particular enterovirus A71 (EV-A71). In EV-A71-associated HFMD, the infection is sometimes associated with severe manifestations including neurological involvement and fatal outcome. The availability of a robust diagnostic assay to distinguish EV-A71 from other EVs is important for patient management and outbreak response.

    METHODS: We developed and validated an internally controlled one-step single-tube real-time RT-PCR in terms of sensitivity, linearity, precision, and specificity for simultaneous detection of EVs and EV-A71. Subsequently, the assay was then applied on throat and rectal swabs sampled from 434 HFMD patients.

    RESULTS: The assay was evaluated using both plasmid DNA and viral RNA and has shown to be reproducible with a maximum assay variation of 4.41 % and sensitive with a limit of detection less than 10 copies of target template per reaction, while cross-reactivity with other EV serotypes was not observed. When compared against a published VP1 nested RT-PCR using 112 diagnostic throat and rectal swabs from 112 children with a clinical diagnosis of HFMD during 2014, the multiplex assay had a higher sensitivity and 100 % concordance with sequencing results which showed EVs in 77/112 (68.8 %) and EV-A71 in 7/112 (6.3 %). When applied to clinical diagnostics for 322 children, the assay detected EVs in throat swabs of 257/322 (79.8 %) of which EV-A71 was detected in 36/322 (11.2 %) children. The detection rate increased to 93.5 % (301/322) and 13.4 % (43/322) for EVs and EV-A71, respectively, when rectal swabs from 65 throat-negative children were further analyzed.

    CONCLUSION: We have successfully developed and validated a sensitive internally controlled multiplex assay for rapid detection of EVs and EV-A71, which is useful for clinical management and outbreak control of HFMD.

    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods*
  14. Wong FL, Wang MK, Boo NY, Hamidah NH, Ainoon BO
    J Clin Lab Anal, 2007;21(3):167-72.
    PMID: 17506482
    The UGT1A1 Taqman MGB probe single nucleotide polymorphism (SNP) genotyping assay was developed to detect nucleotide 211 of the UDP-glucoronocyltransferase 1A1 (UGT1A1) gene. Defects in this enzyme interfere with process of conjugation of bilirubin and cause unconjugated hyperbilirubinemia. Variation at nucleotide 211 in the coding region of the UGT1A1 gene has been shown to be prevalent in Japanese and Chinese. Using an ABI sequence detection system (SDS) 7000, an allele-specific real-time PCR-based genotyping method was established to detect nucleotide G211A. Cord blood from 125 infants without hyperbilirubinemia (controls) were compared with cord blood from 74 infants (cases) with severe hyperbilirubinemia (total serum bilirubin > 300 micromol/L). Homozygous variation of the UGT1A1 gene at nucleotide 211(A/A) is significantly more common in cases (14.9%) than in controls (0.8%) (P<0.001). Direct sequencing from 20 randomly selected samples showed eight samples with homozygous wild type, seven with homozygous variant, and five samples were heterozygous. The result from this assay was in complete concordance with the DNA sequencing result and clearly discriminate wild-type (G/G), homozygous variant (A/A), and heterozygous (G/A). This assay is rapid and robust for screening of SNP G211A to determine if this polymorphism plays a role in causing severe neonatal jaundice in the local context.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods*
  15. Xiu L, Binder RA, Alarja NA, Kochek K, Coleman KK, Than ST, et al.
    J Clin Virol, 2020 07;128:104391.
    PMID: 32403008 DOI: 10.1016/j.jcv.2020.104391
    BACKGROUND: During the past two decades, three novel coronaviruses (CoVs) have emerged to cause international human epidemics with severe morbidity. CoVs have also emerged to cause severe epidemics in animals. A better understanding of the natural hosts and genetic diversity of CoVs are needed to help mitigate these threats.

    OBJECTIVE: To design and evaluate a molecular diagnostic tool for detection and identification of all currently recognized and potentially future emergent CoVs from the Orthocoronavirinae subfamily.

    STUDY DESIGN AND RESULTS: We designed a semi-nested, reverse transcription RT-PCR assay based upon 38 published genome sequences of human and animal CoVs. We evaluated this assay with 14 human and animal CoVs and 11 other non-CoV respiratory viruses. Through sequencing the assay's target amplicon, the assay correctly identified each of the CoVs; no cross-reactivity with 11 common respiratory viruses was observed. The limits of detection ranged from 4 to 4 × 102 copies/reaction, depending on the CoV species tested. To assess the assay's clinical performance, we tested a large panel of previously studied specimens: 192 human respiratory specimens from pneumonia patients, 5 clinical specimens from COVID-19 patients, 81 poultry oral secretion specimens, 109 pig slurry specimens, and 31 aerosol samples from a live bird market. The amplicons of all RT-PCR-positive samples were confirmed by Sanger sequencing. Our assay performed well with all tested specimens across all sample types.

    CONCLUSIONS: This assay can be used for detection and identification of all previously recognized CoVs, including SARS-CoV-2, and potentially any emergent CoVs in the Orthocoronavirinae subfamily.

    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods*
  16. Sunderasan E, Bahari A, Arif SA, Zainal Z, Hamilton RG, Yeang HY
    Clin Exp Allergy, 2005 Nov;35(11):1490-5.
    PMID: 16297147 DOI: 10.1111/j.1365-2222.2005.02371.x
    BACKGROUND:
    Hev b 4 is an allergenic natural rubber latex (NRL) protein complex that is reactive in skin prick tests and in vitro immunoassays. On SDS-polyacrylamide gel electrophoresis (SDS-PAGE), Hev b 4 is discerned predominantly at 53-55 kDa together with a 57 kDa minor component previously identified as a cyanogenic glucosidase. Of the 13 NRL allergens recognized by the International Union of Immunological Societies, the 53-55 kDa Hev b 4 major protein is the only candidate that lacks complete cDNA and protein sequence information.

    OBJECTIVE:
    We sought to clone the transcript encoding the Hev b 4 major protein, and characterize the native protein and its recombinant form in relation to IgE binding.

    METHODS:
    The 5'/3' rapid amplification of cDNA ends method was employed to obtain the complete cDNA of the Hev b 4 major protein. A recombinant form of the protein was over-expressed in Escherichia coli. The native Hev b 4 major protein was deglycosylated by trifluoromethane sulphonic acid. Western immunoblots of the native, deglycosylated and recombinant proteins were performed using both polyclonal antibodies and sera from latex-allergic patients.

    RESULTS:
    The cDNA encoding the Hev b 4 major protein was cloned. Its open reading frame matched lecithinases in the conserved domain database and contained 10 predicted glycosylation sites. Detection of glycans on the Hev b 4 lecithinase homologue confirmed it to be a glycoprotein. The deglycosylated lecithinase homologue was discerned at 40 kDa on SDS-PAGE, this being comparable to the 38.53 kDa mass predicted by its cDNA. Deglycosylation of the lecithinase homologue resulted in the loss of IgE recognition, although reactivity to polyclonal rabbit anti-Hev b 4 was retained. IgE from latex-allergic patients also failed to recognize the non-glycosylated E. coli recombinant lecithinase homologue.

    CONCLUSION:
    The IgE epitopes of the Hev b 4 lecithinase homologue reside mainly in its carbohydrate moiety, which also account for the discrepancy between the observed molecular weight of the protein and the value calculated from its cDNA.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods
  17. Dahlan HM, Karsani SA, Rahman MA, Hamid NA, Top AG, Ngah WZ
    J Nutr Biochem, 2012 Jul;23(7):741-51.
    PMID: 21840697 DOI: 10.1016/j.jnutbio.2011.03.018
    Vitamin E has been suggested to modulate age-associated changes by altering the redox balance resulting in altered gene and/or protein expression. Here we have utilized proteomics to determine whether such regulation in protein expression occurs in human lymphocytes from two different age groups stressed with H₂O₂ and then treated with vitamin E in the form of tocotrienol-rich fraction (TRF). In this study, lymphocytes obtained from young (30-49 years old) and old (>50 years old) volunteers were first challenged with 1 mM H₂O₂. They were then treated by exposure to 50, 100 and 200 μg/ml TRF. Two-dimensional gel electrophoresis followed by MALDI-TOF/TOF (matrix-assisted laser desorption/ionization time-of-flight/time-of-flight) tandem mass spectrometry was then performed on whole-cell protein extracts to identify proteins that have changed in expression. A total of 24 proteins were found to be affected by H₂O₂ and/or TRF treatment. These included proteins that were related to metabolism, antioxidants, structural proteins, protein degradation and signal transduction. Of particular interest was the regulation of a number of proteins involved in stress response--peroxiredoxin-2, peroxiredoxin-3 and peroxiredoxin-6-all of which were shown to be down-regulated with H₂O₂ exposure. The effect was reversed following TRF treatment. The expression of peroxiredoxin-2 and peroxiredoxin-6 was confirmed by quantitative reverse transcriptase polymerase chain reaction. These results suggested that TRF directly influenced the expression dynamics of the peroxiredoxin-2, thus improving the cells ability to resist damage caused by oxidative stress.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods
  18. Teoh BT, Chin KL, Samsudin NI, Loong SK, Sam SS, Tan KK, et al.
    BMC Infect Dis, 2020 Dec 11;20(1):947.
    PMID: 33308203 DOI: 10.1186/s12879-020-05585-4
    BACKGROUND: Early detection of Zika virus (ZIKV) infection during the viremia and viruria facilitates proper patient management and mosquito control measurement to prevent disease spread. Therefore, a cost-effective nucleic acid detection method for the diagnosis of ZIKV infection, especially in resource-deficient settings, is highly required.

    METHODS: In the present study, a single-tube reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the detection of both the Asian and African-lineage ZIKV. The detection limit, strain coverage and cross-reactivity of the ZIKV RT-LAMP assay was evaluated. The sensitivity and specificity of the RT-LAMP were also evaluated using a total of 24 simulated clinical samples. The ZIKV quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay was used as the reference assay.

    RESULTS: The detection limit of the RT-LAMP assay was 3.73 ZIKV RNA copies (probit analysis, P ≤ 0.05). The RT-LAMP assay detected the ZIKV genomes of both the Asian and African lineages without cross-reacting with other arthropod-borne viruses. The sensitivity and specificity of the RT-LAMP assay were 90% (95% CI = 59.6-98.2) and 100% (95% CI = 78.5-100.0), respectively. The RT-LAMP assay detected ZIKV genome in 9 of 24 (37.5%) of the simulated clinical samples compared to 10 of 24 (41.7%) by qRT-PCR assay with a high level of concordance (κ = 0.913, P 

    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods
  19. Ortiz RH, Leon DA, Estevez HO, Martin A, Herrera JL, Romo LF, et al.
    Clin Exp Immunol, 2009 Aug;157(2):271-81.
    PMID: 19604267 DOI: 10.1111/j.1365-2249.2009.03941.x
    Buruli ulcer (BU) is the third most common mycobacterial disease in immunocompetent hosts. BU is caused by Mycobacterium ulcerans, which produces skin ulcers and necrosis at the site of infection. The principal virulence factor of M. ulcerans is a polyketide-derived macrolide named mycolactone, which has cytotoxic and immunosuppressive activities. We determined the severity of inflammation, histopathology and bacillary loads in the subcutaneous footpad tissue of BALB/c mice infected with 11 different M. ulcerans isolates from diverse geographical areas. Strains from Africa (Benin, Ghana, Ivory Coast) induced the highest inflammation, necrosis and bacillary loads, whereas the strains collected from Australia, Asia (Japan, Malaysia, New Guinea), Europe (France) and America (Mexico) induced mild inflammation. Subsequently, animals were infected with the strain that exhibited the highest (Benin) or lowest (Mexico) level of virulence in order to analyse the local immune response generated. The Mexican strain, which does not produce mycolactone, induced a predominantly T helper type 1 (Th1) cytokine profile with constant high expression of the anti-microbial peptides beta defensins 3 and 4, in co-existence with low expression of the anti-inflammatory cytokines interleukin (IL)-10, IL-4 and transforming growth factor (TGF)-beta. The highly virulent strain from Benin which produces mycolactone A/B induced the opposite pattern. Thus, different local immune responses were found depending on the infecting M. ulcerans strain.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods
  20. Ummul Haninah A, Vasan SS, Ravindran T, Chandru A, Lee HL, Shamala Devi S
    Trop Biomed, 2010 Dec;27(3):611-23.
    PMID: 21399603 MyJurnal
    This paper reports the development of a one-step SYBR-Green I-based realtime RT-PCR assay for the detection and quantification of Chikungunya virus (CHIKV) in human, monkey and mosquito samples by targeting the E1 structural gene. A preliminary evaluation of this assay has been successfully completed using 71 samples, consisting of a panel of negative control sera, sera from healthy individuals, sera from patients with acute disease from which CHIKV had been isolated, as well as monkey sera and adult mosquito samples obtained during the chikungunya fever outbreak in Malaysia in 2008. The assay was found to be 100-fold more sensitive than the conventional RT-PCR with a detection limit of 4.12x10(0) RNA copies/μl. The specificity of the assay was tested against other related viruses such as Dengue (serotypes 1-4), Japanese encephalitis, Herpes Simplex, Parainfluenza, Sindbis, Ross River, Yellow fever and West Nile viruses. The sensitivity, specificity and efficiency of this assay were 100%, 100% and 96.8% respectively. This study on early diagnostics is of importance to all endemic countries, especially Malaysia, which has been facing increasingly frequent and bigger outbreaks due to this virus since 1999.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links