Displaying publications 21 - 40 of 2877 in total

Abstract:
Sort:
  1. Saidi NM, Omar FS, Numan A, Apperley DC, Algaradah MM, Kasi R, et al.
    ACS Appl Mater Interfaces, 2019 Aug 21;11(33):30185-30196.
    PMID: 31347822 DOI: 10.1021/acsami.9b07062
    To overcome the critical limitations of liquid-electrolyte-based dye-sensitized solar cells, quasi-solid-state electrolytes have been explored as a means of addressing long-term device stability, albeit with comparatively low ionic conductivities and device performances. Although metal oxide additives have been shown to augment ionic conductivity, their propensity to aggregate into large crystalline particles upon high-heat annealing hinders their full potential in quasi-solid-state electrolytes. In this work, sonochemical processing has been successfully applied to generate fine Co3O4 nanoparticles that are highly dispersible in a PAN:P(VP-co-VAc) polymer-blended gel electrolyte, even after calcination. An optimized nanocomposite gel polymer electrolyte containing 3 wt % sonicated Co3O4 nanoparticles (PVVA-3) delivers the highest ionic conductivity (4.62 × 10-3 S cm-1) of the series. This property is accompanied by a 51% enhancement in the apparent diffusion coefficient of triiodide versus both unmodified and unsonicated electrolyte samples. The dye-sensitized solar cell based on PVVA-3 displays a power conversion efficiency of 6.46% under AM1.5 G, 100 mW cm-2. By identifying the optimal loading of sonochemically processed nanoparticles, we are able to generate a homogenous extended particle network that effectively mobilizes redox-active species through a highly amorphous host matrix. This effect is manifested in a selective 51% enhancement in photocurrent density (JSC = 16.2 mA cm-2) and a lowered barrier to N719 dye regeneration (RCT = 193 Ω) versus an unmodified solar cell. To the best of our knowledge, this work represents the highest known efficiency to date for dye-sensitized solar cells based on a sonicated Co3O4-modified gel polymer electrolyte. Sonochemical processing, when applied in this manner, has the potential to make meaningful contributions toward the ongoing mission to achieve the widespread exploitation of stable and low-cost dye-sensitized solar cells.
    Matched MeSH terms: Hot Temperature
  2. Wang D, Wong SI, Sunarso J, Xu M, Wang W, Ran R, et al.
    ACS Appl Mater Interfaces, 2021 May 05;13(17):20105-20113.
    PMID: 33886260 DOI: 10.1021/acsami.1c02502
    Hydrocarbon-fueled solid oxide fuel cells (SOFCs) that can operate in the intermediate temperature range of 500-700 °C represent an attractive SOFC device for combined heat and power applications in the industrial market. One of the ways to realize such a device relies upon exploiting an in situ steam reforming process in the anode catalyzed by an anti-carbon coking catalyst. Here, we report a new Ni and Ru bimetal-doped perovskite catalyst, Ba(Zr0.1Ce0.7Y0.1Yb0.1)0.9Ni0.05Ru0.05O3-δ (BZCYYbNRu), with enhanced catalytic hydrogen production activity on n-butane (C4H10), which can resist carbon coking over extended operation durations. Ru in the perovskite lattice inhibits Ni precipitation from perovskite, and the high water adsorption capacity of proton conducting perovskite improves the coking resistance of BZCYYbNRu. When BZCYYbNRu is used as a steam reforming catalyst layer on a Ni-YSZ-supported anode, the single fuel cell not only achieves a higher power density of 1113 mW cm-2 at 700 °C under a 10 mL min-1 C4H10 continuous feed stream at a steam to carbon (H2O/C) ratio of 0.5 but also shows a much better operational stability for 100 h at 600 °C compared with those reported in the literature.
    Matched MeSH terms: Hot Temperature; Temperature
  3. Walle KZ, Musuvadhi Babulal L, Wu SH, Chien WC, Jose R, Lue SJ, et al.
    ACS Appl Mater Interfaces, 2021 Jan 20;13(2):2507-2520.
    PMID: 33406841 DOI: 10.1021/acsami.0c17422
    Although solid-state Li-metal batteries (LMBs) featuring polymer-based solid electrolytes might one day replace conventional Li-ion batteries, the poor Li-ion conductivity of solid polymer electrolytes at low temperatures has hindered their practical applications. Herein, we describe the first example of using a co-precipitation method in a Taylor flow reactor to produce the metal hydroxides of both the Ga/F dual-doped Li7La3Zr2O12 (Ga/F-LLZO) ceramic electrolyte precursors and the Li2MoO4-modified Ni0.8Co0.1Mn0.1O2 (LMO@T-LNCM 811) cathode materials for LMBs. The Li/Nafion (LiNf)-coated Ga/F-LLZO (LiNf@Ga/F-LLZO) ceramic filler was finely dispersed in the poly(vinylidene fluoride)/polyacrylonitrile/lithium bis(trifluoromethanesulfonimide)/succinonitrile matrix to give a trilayer composite polymer electrolyte (denoted "Tri-CPE") through a simple solution-casting. The bulk ionic conductivity of the Tri-CPE at room temperature was approximately 4.50 × 10-4 S cm-1 and exhibited a high Li+ ion transference number (0.84). It also exhibits a broader electrochemical window of 1-5.04 V versus Li/Li+. A full cell based on a CR2032 coin cell containing the LMO@T-LNCM811-based composite cathode, when cycled under 1 C/1 C at room temperature for 300 cycles, achieved an average Columbic efficiency of 99.4% and a capacity retention of 89.8%. This novel fabrication strategy for Tri-CPE structures has potential applications in the preparation of highly safe high-voltage cathodes for solid-state LMBs.
    Matched MeSH terms: Temperature
  4. Robin Chang YH, Jiang J, Khong HY, Saad I, Chai SS, Mahat MM, et al.
    ACS Appl Mater Interfaces, 2021 Jun 02;13(21):25121-25136.
    PMID: 34008948 DOI: 10.1021/acsami.1c04759
    Transition metal chalcogenides (TMCs) have gained worldwide interest owing to their outstanding renewable energy conversion capability. However, the poor mechanical flexibility of most existing TMCs limits their practical commercial applications. Herein, triggered by the recent and imperative synthesis of highly ductile α-Ag2S, an effective approach based on evolutionary algorithm and ab initio total-energy calculations for determining stable, ductile phases of bulk and two-dimensional Ag
    x
    Se1-x and Ag
    x
    Te1-x compounds was implemented. The calculations correctly reproduced the global minimum bulk stoichiometric P212121-Ag8Se4 and P21/c-Ag8Te4 structures. Recently reported metastable AgTe3 was also revealed but it lacks dynamical stability. Further single-layered screening unveiled two new monolayer P4/nmm-Ag4Se2 and C2-Ag8Te4 phases. Orthorhombic Ag8Se4 crystalline has a narrow, direct band gap of 0.26 eV that increases to 2.68 eV when transforms to tetragonal Ag4Se2 monolayer. Interestingly, metallic P21/c-Ag8Te4 changes to semiconductor when thinned down to monolayer, exhibiting a band gap of 1.60 eV. Present findings confirm their strong stability from mechanical and thermodynamic aspects, with reasonable Vickers hardness, bone-like Young's modulus (E) and high machinability observed in bulk phases. Detailed analysis of the dielectric functions ε(ω), absorption coefficient α(ω), power conversion efficiency (PCE) and refractive index n(ω) of monolayers are reported for the first time. Fine theoretical PCE (SLME method ∼11-28%), relatively high n(0) (1.59-1.93), and sizable α(ω) (104-105 cm-1) that spans the infrared to visible regions indicate their prospects in optoelectronics and photoluminescence applications. Effective strategies to improve the temperature dependent power factor (PF) and figure of merit (ZT) are illustrated, including optimizing the carrier concentration. With decreasing thickness, ZT of p-doped Ag-Se was found to rise from approximately 0.15-0.90 at 300 K, leading to a record high theoretical conversion efficiency of ∼12.0%. The results presented foreshadow their potential application in a hybrid device that combines the photovoltaic and thermoelectric technologies.
    Matched MeSH terms: Temperature
  5. Esro M, Kolosov O, Jones PJ, Milne WI, Adamopoulos G
    ACS Appl Mater Interfaces, 2017 01 11;9(1):529-536.
    PMID: 27933760 DOI: 10.1021/acsami.6b11214
    Silicon dioxide (SiO2) is the most widely used dielectric for electronic applications. It is usually produced by thermal oxidation of silicon or by using a wide range of vacuum-based techniques. By default, the growth of SiO2 by thermal oxidation of silicon requires the use of Si substrates whereas the other deposition techniques either produce low quality or poor interface material and mostly require high deposition or annealing temperatures. Recent investigations therefore have focused on the development of alternative deposition paradigms based on solutions. Here, we report the deposition of SiO2 thin film dielectrics deposited by spray pyrolysis in air at moderate temperatures of ≈350 °C from pentane-2,4-dione solutions of SiCl4. SiO2 dielectrics were investigated by means of UV-vis absorption spectroscopy, spectroscopic ellipsometry, XPS, XRD, UFM/AFM, admittance spectroscopy, and field-effect measurements. Data analysis reveals smooth (RRMS < 1 nm) amorphous films with a dielectric constant of about 3.8, an optical band gap of ≈8.1 eV, leakage current densities in the order of ≈10(-7) A/cm(2) at 1 MV/cm, and high dielectric strength in excess of 5 MV/cm. XPS measurements confirm the SiO2 stoichiometry and FTIR spectra reveal features related to SiO2 only. Thin film transistors implementing spray-coated SiO2 gate dielectrics and C60 and pentacene semiconducting channels exhibit excellent transport characteristics, i.e., negligible hysteresis, low leakage currents, high on/off current modulation ratio on the order of 10(6), and high carrier mobility.
    Matched MeSH terms: Temperature*
  6. Kashim MZ, Tsegab H, Rahmani O, Abu Bakar ZA, Aminpour SM
    ACS Omega, 2020 Nov 17;5(45):28942-28954.
    PMID: 33225124 DOI: 10.1021/acsomega.0c02358
    The research presented here investigates the reaction mechanism of wollastonite in situ mineral carbonation for carbon dioxide (CO2) sequestration. Because wollastonite contains high calcium (Ca) content, it was considered as a suitable feedstock in the mineral carbonation process. To evaluate the reaction mechanism of wollastonite for geological CO2 sequestration (GCS), a series of carbonation experiments were performed at a range of temperatures from 35 to 90 °C, pressures from 1500 to 4000 psi, and salinities from 0 to 90,000 mg/L NaCl. The kinetics batch modeling results were validated with carbonation experiments at the specific pressure and temperature of 1500 psi and 65 °C, respectively. The results showed that the dissolution of calcium increases with increment in pressure and salinity from 1500 to 4000 psi and 0 to 90000 mg/L NaCl, respectively. However, the calcium concentration decreases by 49%, as the reaction temperature increases from 35 to 90 °C. Besides, it is clear from the findings that the carbonation efficiency only shows a small difference (i.e., ±2%) for changing the pressure and salinity, whereas the carbonation efficiency was shown to be enhanced by 62% with increment in the reaction temperature. These findings can provide information about CO2 mineralization of calcium silicate at the GCS condition, which may enable us to predict the fate of the injected CO2, and its subsurface geochemical evolution during the CO2-fluid-rock interaction.
    Matched MeSH terms: Temperature
  7. Ab Rahman MF, Rusli A, Misman MA, Rashid AA
    ACS Omega, 2020 Nov 24;5(46):30329-30335.
    PMID: 33251468 DOI: 10.1021/acsomega.0c04964
    With increased awareness on the importance of gloves arising from the COVID-19 pandemic, people are expected to continue using them even after the pandemic recedes. This scenario in a way increased the rubber solid waste disposal problem; therefore, the production of biodegradable gloves may be an option to overcome this problem. However, the need to study the shelf life of biodegradable gloves is crucial before commercialization. There are well-established models to address the failure properties of gloves as stated in the American Society for Testing and Material (ASTM) D7160. In this study, polysaccharide-based material-filled natural rubber latex (PFNRL) gloves, which are biodegradable gloves, were subjected to an accelerated aging process at different temperatures of 50-80 °C for 1-120 days. Prediction models based on Arrhenius and shift factors were used to estimate the shelf life of the PFNRL gloves. Based on the results obtained, the estimated time for the PFNRL gloves to retain 75% of their tensile strength at shelf temperature (30 °C) based on Arrhenius and shift factor models was 2.8 years. Verification on the activation energy based on the shift factor model indicated that the shelf life of PFNRL gloves is 2.9 years, which is only a 3.6% difference. The value obtained is aligned with the requirement in accordance with ASTM D7160, which states that only up to a maximum of 3 years' shelf life is allowed for the gloves under accelerated aging conditions.
    Matched MeSH terms: Temperature
  8. Quah HJ, Ahmad FH, Lim WF, Hassan Z
    ACS Omega, 2020 Oct 20;5(41):26347-26356.
    PMID: 33110962 DOI: 10.1021/acsomega.0c02120
    Nitrogen-infused wet oxidation at different temperatures (400-1000 °C) was employed to transform tantalum-hafnia to hafnium-doped tantalum oxide films. High-temperature wet oxidation at 1000 °C marked an onset of crystallization occurring in the film, accompanied with the formation of an interfacial oxide due to a reaction between the inward-diffusing hydroxide ions, which were dissociated from the water molecules during wet oxidation. The existence of nitrogen has assisted in controlling the interfacial oxide formation. However, high-temperature oxidation caused a tendency for the nitrogen to desorb and form N-H complex after reacting with the hydroxide ions. Besides, the presence of N-H complex implied a decrease in the passivation at the oxide-Si interface by hydrogen. As a consequence, defect formation would happen at the interface and influence the metal-oxide-semiconductor characteristics of the samples. In comparison, tantalum-hafnia subjected to nitrogen-infused wet oxidation at 600 °C has obtained the highest dielectric constant, the largest band gap, and the lowest slow trap density.
    Matched MeSH terms: Temperature
  9. Muhammad A, Khan B, Iqbal Z, Khan AZ, Khan I, Khan K, et al.
    ACS Omega, 2019 Sep 03;4(10):14188-14192.
    PMID: 31508540 DOI: 10.1021/acsomega.9b01041
    The antipyretic potential of viscosine, a natural product isolated from the medicinal plant Dodonaea viscosa, was investigated using yeast-induced pyrexia rat model, and its structure-activity relationship was investigated through molecular docking analyses with the target enzymes cyclooxygenase-1 (COX-1), cyclooxygenase-2 (COX-2), and microsomal prostaglandin E synthase-1 (mPGES-1). The in vivo antipyretic experiments showed a progressive dose-dependent reduction in body temperatures of the hyperthermic test animals when injected with viscosine. Comparison of docking analyses with target enzymes showed strongest bonding interactions (binding energy -17.34 kcal/mol) of viscosine with the active-site pocket of mPGES-1. These findings suggest that viscosine shows antipyretic properties by reducing the concentration of prostaglandin E2 in brain through its mPGES-1 inhibitory action and make it a potential lead compound for developing effective and safer antipyretic drugs for treating fever and related pathological conditions.
    Matched MeSH terms: Body Temperature
  10. Akbari A, Mohammadian E, Alavi Fazel SA, Shanbedi M, Bahreini M, Heidari M, et al.
    ACS Omega, 2019 Apr 30;4(4):7038-7046.
    PMID: 31459815 DOI: 10.1021/acsomega.9b00176
    Many studies have investigated natural convection heat transfer from the outside surface of horizontal and vertical cylinders in both constant heat flux and temperature conditions. However, there are poor studies in natural convection from inclined cylinders. In this study, free convection heat transfer was examined experimentally from the outside surface of a cylinder for glycerol and water at various heat fluxes. The tests were performed at 10 different inclination angles of the cylinder, namely, φ = 0°, 10°, 20°, 30°, 40°, 50°, 60°, 70°, 80°, and 90°, measured from the horizon. Our results indicated that the average Nusselt number reduces with the growth in the inclination of the cylinder to the horizon at the same heat flux, and the average Nusselt number enhanced with the growth in heat flux at the same angle. Also, the average Nusselt number of water is greater than that of glycerol. A new experimental model for predicting the average Nusselt number is suggested, which has a satisfactory accuracy for experimental data.
    Matched MeSH terms: Hot Temperature; Temperature
  11. Mustafa NS, Yahya MS, Sazelee N, Ali NA, Ismail M
    ACS Omega, 2018 Dec 31;3(12):17100-17107.
    PMID: 31458330 DOI: 10.1021/acsomega.8b02281
    The K2NiF6 catalytic effect on the NaAlH4 dehydrogenation properties was studied in this work. The desorption temperature was studied using temperature-programmed desorption and exhibited a lower onset hydrogen release after doped with different wt % of K2NiF6 (5, 10, 15 and 20 wt %). It was found that the NaAlH4 doped with 5 wt % K2NiF6 showed the optimal value that can reduce the onset desorption temperature of about 160 °C compared to 190 °C for the milled NaAlH4. The NaAlH4 + 5 wt % K2NiF6 sample showed faster desorption kinetics where 1.5 wt % of hydrogen was released in 30 min at 150 °C. In contrast, the milled NaAlH4 only released about 0.2 wt % within the same time and temperature. From the Kissinger analysis, the apparent activation energy was 114.7 kJ/mol for the milled NaAlH4 and 89.9 kJ/mol for the NaAlH4-doped 5 wt % K2NiF6, indicating that the addition of K2NiF6 reduced the activation energy for hydrogen desorption of NaAlH4. It is deduced that the new phases of AlNi, NaF, and KH that were formed in situ during the dehydrogenation process are the key factors for the improvement of dehydrogenation properties of NaAlH4.
    Matched MeSH terms: Temperature
  12. Zaini MS, Liew JYC, Alang Ahmad SA, Mohmad AR, Ahmad Kamarudin M
    ACS Omega, 2020 Dec 08;5(48):30956-30962.
    PMID: 33324803 DOI: 10.1021/acsomega.0c03768
    The existence of surface organic capping ligands on quantum dots (QDs) has limited the potential in QDs emission properties and energy band gap structure alteration as well as the carrier localization. This drawback can be addressed via depositing a thin layer of a semiconductor material on the surface of QDs. Herein, we report on the comparative study for photoluminescent (PL) properties of PbS and PbS/MnS QDs. The carrier localization effect due to the alteration of energy band gap structure and carrier recombination mechanism in the QDs were investigated via PL measurements in a temperature range of 10-300 K with the variation of the excitation power from 10 to 200 mW. For PbS QDs, the gradient of integrated PL intensity (IPL) as a function of excitation power density graph was less than unity. When the MnS shell layer was deposited onto the PbS core, the PL emission exhibited a blue shift, showing dominant carrier recombination. It was also found that the full width half-maximum showed a gradual broadening with the increasing temperature, affirming the electron-phonon interaction.
    Matched MeSH terms: Temperature
  13. Chai WS, Sun D, Cheah KH, Li G, Meng H
    ACS Omega, 2020 Aug 11;5(31):19525-19532.
    PMID: 32803046 DOI: 10.1021/acsomega.0c01804
    Hydroxylammonium nitrate (HAN) is a promising green propellant because of its low toxicity, high volumetric specific impulse, and reduced development cost. Electrolytic decomposition of HAN is an efficient approach to prepare it for further ignition and combustion. This paper describes the investigation of a co-electrolysis effect on electrolytic decomposition of HAN-fuel mixtures using stainless steel-platinum (SS-Pt) electrodes. For the first time, different materials were utilized as electrodes to alter the cathodic reaction, which eliminated the inhibition effect and achieved a repeatable and consistent electrolytic decomposition of HAN solution. Urea and methanol were added as fuel components in the HAN-fuel mixtures. When the mass ratio of added urea ≥20%, the electrolytic decomposition of a HAN-urea ternary mixture achieved 67% increment in maximum gas temperature (Tgmax) and 185% increment in overall temperature increasing rate over the benchmark case of HAN solution. The co-electrolysis of urea released additional electrons into the mixtures and enhanced the overall electrolytic decomposition of HAN. In contrast, the addition of methanol did not improve the Tgmax but only increased the overall temperature increasing rate. This work has important implications in the development of an efficient and reliable electrolytic decomposition system of HAN and its mixtures for propulsion applications.
    Matched MeSH terms: Temperature
  14. Abdulelah H, Negash BM, Yekeen N, Al-Hajri S, Padmanabhan E, Al-Yaseri A
    ACS Omega, 2020 Aug 18;5(32):20107-20121.
    PMID: 32832765 DOI: 10.1021/acsomega.0c01738
    The influence of an anionic surfactant, a cationic surfactant, and salinity on adsorbed methane (CH4) in shale was assessed and modeled in a series of systematically designed experiments. Two cases were investigated. In case 1, the crushed Marcellus shale samples were allowed to react with anionic sodium dodecyl sulfate (SDS) and brine. In case 2, another set of crushed Marcellus shale samples were treated with cetyltrimethylammonium bromide (CTAB) and brine. The surfactant concentration and salinity of brine were varied following the Box-Behnken experimental design. CH4 adsorption was then assessed volumetrically in the treated shale at varying pressures (1-50 bar) and a constant temperature of 30 °C using a pressure equilibrium cell. Mathematical analysis of the experimental data yielded two separate models, which expressed the amount of adsorbed CH4 as a function of SDS/CTAB concentration, salinity, and pressure. In case 1, the highest amount of adsorbed CH4 was about 1 mmol/g. Such an amount was achieved at 50 bar, provided that the SDS concentration is kept close to its critical micelle concentration (CMC), which is 0.2 wt %, and salinity is in the range of 0.1-20 ppt. However, in case 2, the maximum amount of adsorbed CH4 was just 0.3 mmol/g. This value was obtained at 50 bar and high salinity (∼75 ppt) when the CTAB concentration was above the CMC (>0.029 wt %). The findings provide researchers with insights that can help in optimizing the ratio of salinity and surfactant concentration used in shale gas fracturing fluid.
    Matched MeSH terms: Temperature
  15. Rayung M, Aung MM, Su'ait MS, Chuah Abdullah L, Ahmad A, Lim HN
    ACS Omega, 2020 Jun 23;5(24):14267-14274.
    PMID: 32596563 DOI: 10.1021/acsomega.9b04348
    Biobased polymers are useful materials in substituting conventional petroleum-derived polymers because of their good properties, ready availability, and abundance in nature. This study reports a new jatropha oil-based gel polymer electrolyte (GPE) for use in dye-sensitized solar cells (DSSCs). The GPE was prepared by mixing jatropha oil-based polyurethane acrylate (PUA) with different concentrations of lithium iodide (LiI). The GPE was characterized by infrared spectroscopy, thermal analysis, lithium nuclear magnetic resonance analysis, electrochemical analysis, and photocurrent conversion efficiency. The highest room-temperature ionic conductivity of 1.88 × 10-4 S cm-1 was obtained at 20 wt % of LiI salt. Additionally, the temperature-dependent ionic conductivity of the GPE exhibited Arrhenius behavior with an activation energy of 0.42 eV and a pre-exponential factor of 1.56 × 103 S cm-1. The electrochemical stability study showed that the PUA GPE was stable up to 2.35 V. The thermal stability of the gel electrolyte showed an improvement after the addition of the salt, suggesting a strong intermolecular interaction between PUA and Li, which leads to polymer-salt complexation, as proven by Fourier transform infrared spectroscopy analysis. A DSSC has been assembled using the optimum ionic conductivity gel electrolyte which indicated 1.2% efficiency under 1 sun condition. Thus, the jatropha oil-based GPE demonstrated favorable properties that make it a promising alternative to petroleum-derived polymer electrolytes in DSSCs.
    Matched MeSH terms: Temperature
  16. Rosdi MRH, Ahmad Razali MA, Ku Ishak KM, Ariffin A
    ACS Omega, 2020 Jun 23;5(24):14473-14480.
    PMID: 32596585 DOI: 10.1021/acsomega.0c01114
    Pour point depressant (PPD) emulsion has been gaining attention in crude oil transportation owing to its potential to solve solidification issues that arise in cold climate environments. An emulsion system provides a wide range of temperature application that combines good shelf life and tunable thermal properties to tackle this problem. These features can be achieved by incorporating an antifreeze agent into the emulsion. One of the most commonly used antifreeze agents is ethylene glycol (EG). Hence, this study focuses on the thermal properties and droplet size growth of PPD emulsions that were aged in variable concentrations of EG solution. EG50 exhibited the lowest freezing temperature of -44 °C, while EG25 demonstrated the lowest vitrification temperature of -68.7 °C. The particle size of the emulsions underwent a significant reduction from 332.3 to 228.9 nm upon the stepwise EG concentration increment to EG50. However, when the concentration was increased to EG75, a slight increase in the emulsion particle size was observed with a recorded value of 237.8 nm. Thus, it is concluded that EG50 represents the optimum concentration for delivering the best freezing protection and producing a smaller droplet particle size.
    Matched MeSH terms: Cold Temperature; Temperature
  17. Ragunathan T, Husin H, Wood CD
    ACS Omega, 2020 Aug 11;5(31):19342-19349.
    PMID: 32803027 DOI: 10.1021/acsomega.0c00753
    The ever-increasing demand for the finite source of oil has led oil production companies to produce and transport the produced crude oil as efficiently and economically as possible. One of the major concerns especially in waters like the South China Sea is the deposition of wax on the walls of the pipeline or wellbore, constricting and hindering the hydrocarbon flow. This is due to the low seabed temperatures, which can be below the wax appearance temperature (WAT), leading to the deposition of wax out of waxy crude oil through the molecular dispersion mechanism. Currently, many prevention and remedy methods are in place to overcome the problem, but most of the additives possess environmental threat, as most of the chemical solutions used are toxic, nonorganic, and costly. Hence, this paper aims to provide some insights into the effect of palm oil derivatives such as crude palm oil (CPO) and crude palm kernel oil (CPKO) on wax inhibition. The effect of aging time (i.e., immersion time) was also evaluated. A comparison was made between paraffin inhibition efficiency results (PIE %) obtained by CPO, CPKO, poly(ethylene-co-vinyl acetate) (EVA), and triethanolamine (TEA). It was observed that the average efficiency of 81.67% was obtained when 1% CPO was added to heavy crude oil. The wax inhibition performance reached a plateau after 1.5 h of aging time for all of the investigated samples.
    Matched MeSH terms: Cold Temperature; Temperature
  18. Anuar MAM, Amran NA, Ruslan MSH
    ACS Omega, 2021 Feb 02;6(4):2707-2716.
    PMID: 33553888 DOI: 10.1021/acsomega.0c04897
    Oil and grease remain the dominant contaminants in the palm oil mill effluent (POME) despite the conventional treatment of POME. The removal of residual oil from palm oil-water mixture (POME model) using the progressive freezing process was investigated. An optimization technique called response surface methodology (RSM) with the design of rotatable central composite design was applied to figure out the optimum experimental variables generated by Design-Expert software (version 6.0.4. Stat-Ease, trial version). Besides, RSM also helps to investigate the interactive effects among the independent variables compared to one factor at a time. The variables involved are coolant temperature, XA (4-12 °C), freezing time, XB (20-60 min), and circulation flow, XC (200-600 rpm). The statistical analysis showed that a two-factor interaction model was developed using the obtained experimental data with a coefficient of determination (R2) value of 0.9582. From the RSM-generated model, the optimum conditions for extraction of oil from the POME model were a coolant temperature of 6 °C in 50 min freezing time with a circulation flowrate of 500 rpm. The validation of the model showed that the predicted oil yield and experimental oil yield were 92.56 and 93.20%, respectively.
    Matched MeSH terms: Temperature
  19. Akbar N, Siddiqui R, Iqbal M, Sagathevan K, Kim KS, Habib F, et al.
    ACS Omega, 2021 May 11;6(18):12261-12273.
    PMID: 34056379 DOI: 10.1021/acsomega.1c01137
    Among several animals, Rattus rattus (rat) lives in polluted environments and feeds on organic waste/small invertebrates, suggesting the presence of inherent mechanisms to thwart infections. In this study, we isolated gut bacteria of rats for their antibacterial activities. Using antibacterial assays, the findings showed that the conditioned media from selected bacteria exhibited bactericidal activities against Gram-negative (Escherichia coli K1, Klebsiella pneumoniae, Pseudomonas aeruginosa, Serratia marcescens, and Salmonella enterica) and Gram-positive (Bacillus cereus, methicillin-resistant Staphylococcus aureus, and Streptococcus pyogenes) pathogenic bacteria. The conditioned media retained their antibacterial properties upon heat treatment at boiling temperature for 10 min. Using MTT assays, the conditioned media showed minimal cytotoxic effects against human keratinocyte cells. Active conditioned media were subjected to tandem mass spectrometry, and the results showed that conditioned media from Bacillus subtilis produced a large repertoire of surfactin and iturin A (lipopeptides) molecules. To our knowledge, this is the first report of isolation of lipopeptides from bacteria isolated from the rat gut. In short, these findings are important and provide a platform to develop effective antibacterial drugs.
    Matched MeSH terms: Hot Temperature; Temperature
  20. Abdul Manap AH, Md Izah SS, Mohamed K
    ACS Omega, 2019 Dec 03;4(23):20257-20264.
    PMID: 31815228 DOI: 10.1021/acsomega.9b02547
    This study aims at investigating the distortion of poly(dimethylsiloxane) (PDMS) nanostructures in a soft lithography demolding process using molecular dynamics simulation. Experimental results show that after peeling, PDMS nanopillars became 10-60% longer in height than the mold size. Molecular dynamics simulations have been employed to plot the stress-strain curve of the nanopillars when subjected to uniaxial stress. Three force fields (COMPASS, CVFF, and PCFF) were used for modeling. The demolding process in soft lithography and nanoimprint lithography causes significant deformation in replication. The experimental results show clear signs of elongation after demolding. Molecular dynamics simulations are employed to study the stress-strain relationship of the PDMS nanopillars. The results from the simulation show that a PDMS nanopillar at temperature T = 300 K under tensile stress shows characteristics of flexible plastic under tensile stress and has a lower Young's modulus, ultimate tensile stress, and Poisson's ratio.
    Matched MeSH terms: Temperature
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links