Displaying publications 21 - 32 of 32 in total

Abstract:
Sort:
  1. Chung, Hung Hui, Azham Zulkharnain
    MyJurnal
    The FADS2 catalyzes the first rate-limiting step in the long chain-polyunsaturated fatty acids
    (LC-PUFAs) biosynthesis pathway by converting -linolenic acid and linoleic acid into
    stearidonic acid and -linolenic acid via the -3 and -6 pathways respectively. In mammals,
    PPAR and SREBP-1c have been implicated in the polyunsaturated fatty acids (PUFAs)
    mediated transcriptional activation of FADS2 promoter. However, in zebrafish, not much is
    known regarding the regulation of fads2 transcriptional regulation. Here, in this study, five
    vectors containing different promoter regions were constructed in order to analyse putative
    promoter activities. Through truncation analysis, it was found that the 1.2 kb promoter was able
    to drive luciferase activity to an approximate 40-fold in HepG2 cells. Upon mutagenesis
    analysis, three sites which are the putative NF-Y, SREBP and PPAR binding sites were found
    to be essential in driving the promoter activity. Lastly, the 1.2 kb fads2 promoter was able to
    direct EGFP expression specifically to the yolk syncytial layer (YSL) when transiently
    expressed in microinjected zebrafish embryos.
    Matched MeSH terms: Transcriptional Activation
  2. Noor AF, Soo TCC, Ghani FM, Goh ZH, Khoo LT, Bhassu S
    Heliyon, 2017 Dec;3(12):e00446.
    PMID: 29322096 DOI: 10.1016/j.heliyon.2017.e00446
    Background: Dystrophin, an essential protein functional in the maintenance of muscle structural integrity is known to be responsible for muscle deterioration during white spot syndrome virus (WSSV) infection among prawn species. Previous studies have shown the upregulation of dystrophin protein in Macrobrachium rosenbergii (the giant freshwater prawn) upon white spot syndrome virus (WSSV) infection. The literature has also suggested the important role of calcium ion alterations in causing such muscle diseases. Thus, the interest of this study lies within the linkage between dystrophin functioning, intracellular calcium and white spot syndrome virus (WSSV) infection condition.

    Methods: In this study, the dystrophin gene from M. rosenbergii (MrDys) was first characterised followed by the characterization of dystrophin gene from a closely related shrimp species, Penaeus monodon (PmDys). Dystrophin sequences from different phyla were then used for evolutionary comparison through BLAST analysis, conserved domain analysis and phylogenetic analysis. The changes in mRNA expression levels of dystrophin and the alteration of intracellular calcium concentrations in WSSV infected muscle cells were then studied.

    Results: A 1246 base pair long dystrophin sequence was identified in the giant freshwater prawn, Macrobrachium rosenbergii (MrDys) followed by 1082 base pair long dystrophin sequence in P. monodon (PmDys). Four conserved domains were identified from the thirteen dystrophin sequences compared which were classified into 5 different phyla. From the phylogenetic analysis, aside from PmDys, the characterised MrDys was shown to be most similar to the invertebrate phylum of Nematoda. In addition, an initial down-regulation of dystrophin gene expression followed by eventual up-regulation, together with an increase in intracellular calcium concentration [Ca2+]
    i
    were shown upon WSSV experimental infection.

    Discussion: Both the functionality of the dystrophin protein and the intracellular calcium concentration were affected by WSSV infection which resulted in progressive muscle degeneration. An increased understanding of the role of dystrophin-calcium in MrDys and the interactions between these two components is necessary to prevent or reduce occurrences of muscle degeneration caused by WSSV infection, thereby reducing economic losses in the prawn farming industry from such disease.

    Matched MeSH terms: Transcriptional Activation
  3. Tey BT, Al-Rubeai M
    J Biosci Bioeng, 2005 Sep;100(3):303-10.
    PMID: 16243281
    Chemostat cultures of NS0 cell lines were carried out at dilution rates ranging from 0.8 d(-1) to 0.2 d(-1). Compared with the control, the viable cell density of the Bcl-2 cell line was approximately 10% higher at 0.8 d(-1) and increased to 55% when the dilution rate was reduced to 0.2 d(-1). As the dilution rate was reduced, the viability of the two cultures diverged reaching a difference of 43% at 0.2 d(-1). The specific growth rate of the control cells was the same as the dilution rate down to a value of 0.6 d(-1). By contrast, the specific growth rate of Bcl-2 cells was parallel to the dilution rate down to a value as low as 0.3 d(-1). For both NS0 cell lines, the G1 cell population decreased, while the S and G2/M cell populations increased as the dilution rate was reduced. The antibody titer of the control cells increased from 7 to 21 microg.ml(-1) as the dilution rate was reduced from 0.8 to 0.2 d(-1). With an initial increase from 2 to 15 microg.ml(-1) as the dilution rate was reduced from 0.8 to 0.4 d(-1), the antibody titer of the Bcl-2 cells remained constant as the dilution rate was further reduced to 0.2 d(-1). A good correlation between specific antibody production rate and the percentage of G2/M cells was observed.
    Matched MeSH terms: Transcriptional Activation
  4. Pratama E, Tian X, Lestari W, Iseki S, Ichwan SJ, Ikeda MA
    Biochem Biophys Res Commun, 2015 Dec;468(1-2):248-54.
    PMID: 26519881 DOI: 10.1016/j.bbrc.2015.10.121
    ARID3A and ARID3B are transcriptional targets of p53. Recently, it has been reported that ARID3A plays a critical role in the transcriptional activation of pro-arrest p21 in response to DNA damage. However, the role of ARID3B in the p53 regulatory pathway remains poorly understood. Here we show that ARID3A and ARID3B specifically bind to putative ARID3-binding sites in p53 target genes in vitro and in vivo. ARID3B and, to a lesser extent, ARID3A silencing blocked transcriptional activation of pro-apoptotic p53 target genes, such as PUMA, PIG3, and p53. Furthermore, ectopic ARID3B, to a lesser extent, ARID3A expression activated the pro-apoptotic gene expression, and only ARID3B induced apoptosis. Finally, ARID3B but not ARID3A silencing blocked apoptosis induction following DNA damage. These results indicated that, although ARID3B and ARID3A share overlapping functions, ARID3B play a key role in the expression of pro-apoptotic p53-target genes and apoptosis.
    Matched MeSH terms: Transcriptional Activation
  5. Mahil SK, Twelves S, Farkas K, Setta-Kaffetzi N, Burden AD, Gach JE, et al.
    J Invest Dermatol, 2016 11;136(11):2251-2259.
    PMID: 27388993 DOI: 10.1016/j.jid.2016.06.618
    Prominent skin involvement is a defining characteristic of autoinflammatory disorders caused by abnormal IL-1 signaling. However, the pathways and cell types that drive cutaneous autoinflammatory features remain poorly understood. We sought to address this issue by investigating the pathogenesis of pustular psoriasis, a model of autoinflammatory disorders with predominant cutaneous manifestations. We specifically characterized the impact of mutations affecting AP1S3, a disease gene previously identified by our group and validated here in a newly ascertained patient resource. We first showed that AP1S3 expression is distinctively elevated in keratinocytes. Because AP1S3 encodes a protein implicated in autophagosome formation, we next investigated the effects of gene silencing on this pathway. We found that AP1S3 knockout disrupts keratinocyte autophagy, causing abnormal accumulation of p62, an adaptor protein mediating NF-κB activation. We showed that as a consequence, AP1S3-deficient cells up-regulate IL-1 signaling and overexpress IL-36α, a cytokine that is emerging as an important mediator of skin inflammation. These abnormal immune profiles were recapitulated by pharmacological inhibition of autophagy and verified in patient keratinocytes, where they were reversed by IL-36 blockade. These findings show that keratinocytes play a key role in skin autoinflammation and identify autophagy modulation of IL-36 signaling as a therapeutic target.
    Matched MeSH terms: Transcriptional Activation
  6. Chew CH, Samian MR, Najimudin N, Tengku-Muhammad TS
    Biochem Biophys Res Commun, 2003 May 30;305(2):235-43.
    PMID: 12745064
    Peroxisome proliferator-activated receptor alpha (PPARalpha) is a ligand-activated transcriptional factor that governs many biological processes, including lipid metabolism, inflammation, and atherosclerosis. We demonstrate here the existence of six variants and multiple transcriptional start sites of the 5(') untranslated region (UTR) of hPPARalpha gene, originating from the use of alternative splicing mechanisms and four different promoters. Three new novel exons at the 5(')-untranslated region of human PPARalpha gene were also identified and designated as Exon A, Exon B, and Exon 2b. In addition, 1.2kb promoter fragment which drives the transcription of 2 variants with Exon B (hPPARalpha4 and 6) was successfully cloned and characterised. Sequencing results revealed promoter B did not contain a conservative TATA box within the first 100 nucleotides from transcriptional start site but has several GC-rich regions and putative Sp1 sites. Using luciferase reporter constructs transfected into HepG2 and Hep3B cell lines, promoter B was shown to be functionally active. Basal transcriptional activity was significantly high in the promoter fragment -341/+34, but lower in the region -341/-1147 as compared to the fragment -341/+34, indicating the presence of an element conferring transcriptional activation between positions -341 and +34 or alternatively, the presence of transcriptional repression between positions -341 and -1147 in the promoter B of hPPARalpha.
    Matched MeSH terms: Transcriptional Activation
  7. Tay SS, Kuah MK, Shu-Chien AC
    Sci Rep, 2018 03 01;8(1):3874.
    PMID: 29497119 DOI: 10.1038/s41598-018-22157-4
    The front-end desaturases (Fads) are rate-limiting enzymes responsible for production of long-chain polyunsaturated fatty acids (LC-PUFA). The full spectrum of the transcriptional regulation of fads is still incomplete, as cloning of fads promoter is limited to a few species. Here, we described the cloning and characterisation of the zebrafish fads2 promoter. Using 5'-deletion and mutation analysis on this promoter, we identified a specific region containing the sterol regulatory element (SRE) which is responsible for the activation of the fads2 promoter. In tandem, two conserved CCAAT boxes were also present adjacent to the SRE and mutation of either of these binding sites attenuates the transcriptional activation of the fads2 promoter. An in vivo analysis employing GFP reporter gene in transiently transfected zebrafish embryos showed that this 1754 bp upstream region of the fads2 gene specifically directs GFP expression in the yolk syncytial layer (YSL) region. This indicates a role for LC-PUFA in the transport of yolk lipids through this tissue layer. In conclusion, besides identifying novel core elements for transcriptional activation in zebrafish fads2 promoter, we also reveal a potential role for fads2 or LC-PUFA in YSL during development.
    Matched MeSH terms: Transcriptional Activation
  8. Shawish HB, Wong WY, Wong YL, Loh SW, Looi CY, Hassandarvish P, et al.
    PLoS One, 2014;9(6):e100933.
    PMID: 24977407 DOI: 10.1371/journal.pone.0100933
    BACKGROUND: The biological properties of thiosemicarbazone have been widely reported. The incorporation of some transition metals such as Fe, Ni and Cu to thiosemicarbazone complexes is known to enhance its biological effects. In this study, we incorporated nickel(II) ions into thiosemicarbazone with N4-substitution groups H3L (H; H3L1, CH3; H3L2, C6H5; H3L3 and C2H5; H3L4) and examined its potential anti-inflammatory activity.

    METHODOLOGY/PRINCIPAL FINDINGS: Four ligands (1-4) and their respective nickel-containing complexes (5-8) were synthesized and characterized. The compounds synthesized were tested for their effects on NF-κB nuclear translocation, pro-inflammatory cytokines secretion and NF-κB transactivation activity. The active compound was further evaluated on its ability to suppress carrageenan-induced acute inflammation in vivo. A potential binding target of the active compound was also predicted by molecular docking analysis.

    CONCLUSIONS/SIGNIFICANCE: Among all synthesized compounds tested, we found that complex [Ni(H2L1)(PPh3)]Cl (5) (complex 5), potently inhibited IκBα degradation and NF-κB p65 nuclear translocation in LPS-stimulated RAW264.7 cells as well as TNFα-stimulated HeLa S3 cells. In addition, complex 5 significantly down-regulated LPS- or TNFα-induced transcription of NF-κB target genes, including genes that encode the pro-inflammatory cytokines TNFα, IFNβ and IL6. Luciferase reporter assays confirmed that complex 5 inhibited the transactivation activity of NF-κB. Furthermore, the anti-inflammatory effect of complex 5 was also supported by its suppressive effect on carrageenan-induced paw edema formation in wild type C57BL/6 mice. Interestingly, molecular docking study showed that complex 5 potentially interact with the active site of IKKβ. Taken together, we suggest complex 5 as a novel NF-κB inhibitor with potent anti-inflammatory effects.

    Matched MeSH terms: Transcriptional Activation/drug effects*
  9. Al-Astani Tengku Din TA, Shamsuddin SH, Idris FM, Ariffin Wan Mansor WN, Abdul Jalal MI, Jaafar H
    Asian Pac J Cancer Prev, 2014;15(9):3939-44.
    PMID: 24935577
    BACKGROUND: To elucidate the role of rapamycin and PF4 on apoptosis regulation via Bax (pro-apoptosis), Bcl-2 (anti-apoptosis) and survivin activation on the growth in the 1-methyl-1-nitrosourea -induced invasive breast carcinoma model.

    MATERIALS AND METHODS: Thirty five female Sprague Dawley rats at age 21-day old were divided into 4 groups; Group 1 (control, n=10), Group 2 (PF4, n=5), Group 3 (rapamycin, n=10) and Group 4 (rapamycin+PF4, n=10). MNU was administered intraperitionally, dosed at 70 mg/kg body weight. The rats were treated when the tumors reached the size of 14.5 ± 0.5 mm and subsequently sacrificed after 5 days. Rapamycin and PF4 were administered as focal intralesional injections at the dose of 20 μg/lesion. The tumor tissue was then subjected to histopathological examinations for morphological appraisal and immunohistochemical assessment of the pro-apoptotic marker, Bax and anti-apoptotic markers, Bcl-2 and survivin.

    RESULTS: The histopathological pattern of the untreated control cohort showed that the severity of the malignancy augments with mammary tumor growth. Tumors developing in untreated groups were more aggressive whilst those in treated groups demonstrated a transformation to a less aggressive subtype. Combined treatment resulted in a significant reduction of tumor size without phenotypic changes. Bax, the pro-apoptotic marker, was significantly expressed at higher levels in the rapamycin-treated and rapamycin+PF4-treated groups compared to controls (p<0.05). Consequently, survivin was also significantly downregulated in the rapamycin-treated and rapamycin+PF4-treated group and this was significantly different when compared to controls (p).

    CONCLUSIONS: In our rat model, it could be clearly shown that rapamycin specifically affects Bax and survivin signaling pathways in activation of apoptosis. We conclude that rapamycin plays a critical role in the induction of apoptosis in MNU-induced mammary carcinoma.

    Matched MeSH terms: Transcriptional Activation
  10. Gan CP, Patel V, Mikelis CM, Zain RB, Molinolo AA, Abraham MT, et al.
    Oncotarget, 2014 Oct 30;5(20):9626-40.
    PMID: 25275299
    Oral squamous cell carcinoma (OSCC) has a propensity to spread to the cervical lymph nodes (LN). The presence of cervical LN metastases severely impacts patient survival, whereby the two-year survival for oral cancer patients with involved LN is ~30% compared to over 80% in patients with non-involved LN. Elucidation of key molecular mechanisms underlying OSCC metastasis may afford an opportunity to target specific genes, to prevent the spread of OSCC and to improve patient survival. In this study, we demonstrated that expression of the heterotrimeric G-protein alpha-12 (Gα12) is highly up-regulated in primary tumors and LN of OSCC patients, as assessed by quantitative polymerase chain reaction (qPCR) and immunohistochemistry (IHC). We also found that exogenous expression of the constitutively activated-form of Gα12 promoted cell migration and invasion in OSCC cell lines. Correspondingly, inhibition of Gα12 expression by shRNA consistently inhibited OSCC cell migration and invasion in vitro. Further, the inhibition of G12 signaling by regulator of G-protein signaling (RGS) inhibited Gα12-mediated RhoA activation, which in turn resulted in reduced LN metastases in a tongue-orthotopic xenograft mouse model of oral cancer. This study provides a rationale for future development and evaluation of drug candidates targeting Gα12-related pathways for metastasis prevention.
    Matched MeSH terms: Transcriptional Activation
  11. Wong JH, Namasivayam P, Abdullah MP
    Planta, 2012 Feb;235(2):267-77.
    PMID: 21874349 DOI: 10.1007/s00425-011-1506-9
    Phenylalanine ammonia lyase (PAL) plays a major role in plant growth, development and adaptation. In Arabidopsis thaliana, the enzyme is encoded by four genes, namely PAL1, PAL2, PAL3, and PAL4 with PAL1 and PAL2 being closely related phylogenetically and functionally. PAL1 promoter activities are associated with plant development and are inducible by various stress agents. However, PAL2 promoter activities have not been functionally analysed. Here, we show that the PAL2 promoter activities are associated with the structural development of a plant and its organs. This function was inducible in an organ-specific manner by the avirulent strain of Pseudomonas syringae pv. tomato (JL1065). The PAL2 promoter was active throughout the course of the plant development particularly in the root, rosette leaf, and inflorescence stem that provide the plant with structural support. In aerial organs, the levels of PAL2 promoter activities were negatively correlated with relative positions of the organs to the rosette leaves. The promoter was inducible in the root following an inoculation by JL1065 in the leaf suggesting PAL2 to be part of an induced defence system. Our results demonstrate how the PAL2 promoter activities are being coordinated and synchronised for the structural development of the plant and its organs based on the developmental programme. Under certain stress conditions the activity may be induced in favour of certain organs.
    Matched MeSH terms: Transcriptional Activation
  12. Tan BL, Norhaizan ME, Huynh K, Yeap SK, Hazilawati H, Roselina K
    World J Gastroenterol, 2015 Aug 7;21(29):8826-35.
    PMID: 26269672 DOI: 10.3748/wjg.v21.i29.8826
    To investigate the mechanistic action of brewers' rice in regulating the Wnt/nuclear factor-kappa B (NF-κB)/Nrf2-signaling pathways during colon carcinogenesis in male Sprague-Dawley rats.
    Matched MeSH terms: Transcriptional Activation
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links