Displaying publications 21 - 40 of 62 in total

Abstract:
Sort:
  1. Eshraghi A, Osman NA, Gholizadeh H, Ali S, Shadgan B
    Biomed Eng Online, 2013;12:119.
    PMID: 24237942 DOI: 10.1186/1475-925X-12-119
    Research has tremendously contributed to the developments in both practical and fundamental aspects of limb prosthetics. These advancements are reflected in scientific articles, particularly in the most cited papers. This article aimed to identify the 100 top-cited articles in the field of limb prosthetics and to investigate their main characteristics. Articles related to the field of limb prosthetics and published in the Web of Knowledge database of the Institute for Scientific Information (ISI) from the period of 1980 to 2012. The 100 most cited articles in limb prosthetics were selected based on the citation index report. All types of articles except for proceedings and letters were included in the study. The study design and level of evidence were determined using Sackett's initial rules of evidence. The level of evidence was categorized either as a systematic review or meta-analysis, randomized controlled trial, cohort study, case-control study, case series, expert opinion, or design and development. The top cited articles in prosthetics were published from 1980 to 2012 with a citation range of 11 to 90 times since publication. The mean citation rate was 24.43 (SD 16.7) times. Eighty-four percent of the articles were original publications and were most commonly prospective (76%) and case series studies (67%) that used human subjects (96%) providing level 4 evidence. Among the various fields, rehabilitation (47%), orthopedics (29%), and sport sciences (28%) were the most common fields of study. The study established that studies conducted in North America and were written in English had the highest citations. Top cited articles primarily dealt with lower limb prosthetics, specifically, on transtibial and transradial prosthetic limbs. Majority of the articles were experimental studies.
    Matched MeSH terms: Artificial Limbs*
  2. Ali S, Abu Osman NA, Naqshbandi MM, Eshraghi A, Kamyab M, Gholizadeh H
    Arch Phys Med Rehabil, 2012 Nov;93(11):1919-23.
    PMID: 22579945 DOI: 10.1016/j.apmr.2012.04.024
    To investigate the effects of 3 dissimilar suspension systems on participants' satisfaction and perceived problems with their prostheses.
    Matched MeSH terms: Artificial Limbs*
  3. Faisham WI, Zulmi W, Halim AS
    Med J Malaysia, 2005 Jul;60 Suppl C:45-8.
    PMID: 16381283
    Total femur endoprothesis is an alternative replacement for massive malignant bone tumor with intramedullary extension or skip lesion. Four patients underwent total femoral resection and replacement with megaprosthesis: three had primary malignant bone tumor and one had salvage procedure for aseptic loosening of the distal femoral replacement. Tumor-free margins were achieved in all patients with two patients required vascularized latissimus dorsi free flap cover for reconstruction of soft tissue defects. The average follow-up was 24 months (range 16 - 60 months). All four patients were still alive with three of them being disease-free and one survived even with the presence of lung metastasis. The functional results obtained were either excellent or good in all patients in accordance to the Musculoskeletal Tumors Society grading system.
    Matched MeSH terms: Artificial Limbs*
  4. Arifin N, Abu Osman NA, Ali S, Gholizadeh H, Wan Abas WA
    Proc Inst Mech Eng H, 2015 Jul;229(7):491-8.
    PMID: 26019139 DOI: 10.1177/0954411915587595
    In recent years, computerized posturography has become an essential tool in quantitative assessment of postural steadiness in the clinical settings. The purpose of this study was to explore the ability of the Biodex(®) Stability System (BSS) to quantify postural steadiness in below-knee amputees. A convenience sample of 10 below-knee amputees participated in the study. The overall (OSI), anterior-posterior (APSI) and medial-lateral (MLSI) stability indexes as well as the percentage of time spent in left and right quadrants and four concentric zones were measured under altered sensory conditions while standing with solid ankle cushion heel (SACH), single-axis (SA) and energy storage and release (ESAR) feet. Significant difference was found between sensory conditions in SACH and ESAR feet for OSI (SACH, p = 0.002; ESAR, p = 0.005), APSI (SACH, p = 0.036; ESAR, p = 0.003) and MLSI (SACH, p = 0.008; ESAR, p = 0.05) stability indexes. The percentage of time spent in Zone A (0°-5°) was significantly greater than the other three concentric zones (p < 0.01). The loading time percentage on their intact limb (80%-94%) was significantly longer than the amputated limb (20%-6%) in all conditions for all three prosthetic feet. Below-knee amputees showed compromised postural steadiness when visual, proprioceptive or vestibular sensory input was altered. The findings highlight that the characteristics of postural stability in amputees can be clinically assessed by utilizing the outcomes produced by the BSS.
    Matched MeSH terms: Artificial Limbs*
  5. Nurhanisah MH, Jawaid M, Ahmad Azmeer R, Paridah MT
    Disabil Rehabil Assist Technol, 2019 07;14(5):513-520.
    PMID: 29933703 DOI: 10.1080/17483107.2018.1479782
    This study describes a newly developed prosthetic leg socket design for a below-knee amputation. Excessive heat and the resulted perspiration within a prosthetic socket were the most common causes for reporting a reduced quality of life for prosthetic users. The product namely AirCirc means air circulation and it has been designed by approach of medical device design process in providing the amputees to maintain the skin temperature inside the socket. This device has been designed to provide the amputees with comfort and ultimate breathable. In order to design the device, the small hole was made in prosthetic socket surface since it has a function as air circulation. Four types of proposed sockets namely P1, P2, P3 and P4 and one control socket were compared on a single patient to determine the best design of prosthetic socket. The result successfully reveals that by using holes can be maintain the temperature inside prosthetic socket. In addition to the eco-friendly material, the woven kenaf was used as material that provides good strength as compared to glass fibre and offer sustainable and biodegradable product yet provides unique and aesthetic surface as came from woven kenaf itself. The objective of this paper is to provide the airflow prosthetic socket design and optimize the use of natural fibre in prostheses field. Thus, with the use of the environmental friendly material, functionality device and heat removal capability make the device suitable for maintaining a comfortable and healthy environment for prosthesis. Implications of Rehabilitation Newly developed prosthetic leg socket design for a below-knee amputation Device has been designed to provide the amputees with comfort and ultimate breathable Woven kenaf was used as material that provides good strength as compared to glass fibre for sustainable and biodegradable product Results show that by using holes can be maintain the temperature inside prosthetic socket.
    Matched MeSH terms: Artificial Limbs*
  6. Al-Fakih E, Arifin N, Pirouzi G, Mahamd Adikan FR, Shasmin HN, Abu Osman NA
    J Biomed Opt, 2017 Aug;22(8):1-8.
    PMID: 28822140 DOI: 10.1117/1.JBO.22.8.087001
    This paper presents a fiber Bragg grating (FBG)-instrumented prosthetic silicone liner that provides cushioning for the residual limb and can successfully measure interface pressures inside prosthetic sockets of lower-limb amputees in a simple and practical means of sensing. The liner is made of two silicone layers between which 12 FBG sensors were embedded at locations of clinical interest. The sensors were then calibrated using a custom calibration platform that mimics a real-life situation. Afterward, a custom gait simulating machine was built to test the liner performance during an amputee's simulated gait. To validate the findings, the results were compared to those obtained by the commonly used F-socket mats. As the statistical findings reveal, both pressure mapping methods measured the interface pressure in a consistent way, with no significant difference (P-values ≥0.05). This pressure mapping technique in the form of a prosthetic liner will allow prosthetics professionals to quickly and accurately create an overall picture of the interface pressure distribution inside sockets in research and clinical settings, thereby improving the socket fit and amputee's satisfaction.
    Matched MeSH terms: Artificial Limbs*
  7. Gholizadeh H, Abu Osman NA, Eshraghi A, Ali S, Razak NA
    Clin Biomech (Bristol), 2014 Jan;29(1):87-97.
    PMID: 24315710 DOI: 10.1016/j.clinbiomech.2013.10.013
    Today a number of prosthetic suspension systems are available for transtibial amputees. Consideration of an appropriate suspension system can ensure that amputee's functional needs are satisfied. The higher the insight to suspension systems, the easier would be the selection for prosthetists. This review attempted to find scientific evidence pertaining to various transtibial suspension systems to provide selection criteria for clinicians.
    Matched MeSH terms: Artificial Limbs*
  8. Bin Ahmad Nadzri AA, Ahmad SA, Marhaban MH, Jaafar H
    Australas Phys Eng Sci Med, 2014 Mar;37(1):133-7.
    PMID: 24443218 DOI: 10.1007/s13246-014-0243-3
    Surface electromyography (SEMG) signals can provide important information for prosthetic hand control application. In this study, time domain (TD) features were used in extracting information from the SEMG signal in determining hand motions and stages of contraction (start, middle and end). Data were collected from ten healthy subjects. Two muscles, which are flexor carpi ulnaris (FCU) and extensor carpi radialis (ECR) were assessed during three hand motions of wrist flexion (WF), wrist extension (WE) and co-contraction (CC). The SEMG signals were first segmented into 132.5 ms windows, full wave rectified and filtered with a 6 Hz low pass Butterworth filter. Five TD features of mean absolute value, variance, root mean square, integrated absolute value and waveform length were used for feature extraction and subsequently patterns were determined. It is concluded that the TD features that were used are able to differentiate hand motions. However, for the stages of contraction determination, although there were patterns observed, it is determined that the stages could not be properly be differentiated due to the variability of signal strengths between subjects.
    Matched MeSH terms: Artificial Limbs
  9. Jamayet NB, Kirangi JK, Husein A, Alam MK
    Eur J Dent, 2017 4 25;11(1):130-134.
    PMID: 28435380 DOI: 10.4103/1305-7456.202636
    Enucleation and evisceration are the most common surgical procedures that are performed to manage tumor, trauma, and infection. Given the consequences of surgical intervention, the conditions of the remaining eye socket may affect future prosthetic rehabilitation. A custom-made ocular prosthesis can be used to help restore the esthetics and functional defects and to improve the quality of life of patients with such conditions. An assessment must be performed on the prosthetic outcome before rehabilitation. The etiology of defect, type of surgery, condition of the remaining socket, and patient's age should all be considered. This report discusses three different etiological eye defects that have undergone enucleation and evisceration and describes the factors that have a significant role in the esthetic and functional outcome of the prosthesis. This report should serve as a helpful aid for maxillofacial prosthodontists to understand the primary objective of rehabilitating each eye defect and to meet patient expectations.
    Matched MeSH terms: Artificial Limbs
  10. Lutfi SNN, Abd Razak NA, Ali S, Gholizadeh H
    Biomed Tech (Berl), 2021 Jun 25;66(3):317-322.
    PMID: 34062632 DOI: 10.1515/bmt-2019-0110
    Materials with low-strength and low-impedance properties, such as elastomers and polymeric foams are major contributors to prosthetic liner design. Polyethylene-Light (Pelite™) is a foam liner that is the most frequently used in prosthetics but it does not cater to all amputees' limb and skin conditions. The study aims to investigate the newly modified Foam Liner, a combination of two different types of foams (EVA + PU + EVA) as the newly modified Foam Liner in terms of compressive and tensile properties in comparison to Pelite™, polyurethane (PU) foam, and ethylene-vinyl acetate (EVA) foam. Universal testing machine (AGS-X, Shimadzu, Kyoto, Japan) has been used to measure the tensile and compressive stress. Pelite™ had the highest compressive stress at 566.63 kPa and tensile stress at 1145 kPa. Foam Liner fell between EVA and Pelite™ with 551.83 kPa at compression and 715.40 kPa at tension. PU foam had the lowest compressive stress at 2.80 kPa and tensile stress at 33.93 kPa. Foam Liner has intermediate compressive elasticity but has high tensile elasticity compared to EVA and Pelite™. Pelite™ remains the highest in compressive and tensile stiffness. Although it is good for amputees with bony prominence, constant pressure might result in skin breakdown or ulcer. Foam Liner would be the best for amputees with soft tissues on the residual limbs to accommodate movement.
    Matched MeSH terms: Artificial Limbs
  11. Bhuiyan MS, Choudhury IA, Dahari M
    Biol Cybern, 2015 Apr;109(2):141-62.
    PMID: 25491411 DOI: 10.1007/s00422-014-0635-1
    Development of an advanced control system for prostheses (artificial limbs) is necessary to provide functionality, effectiveness, and preferably the feeling of a sound living limb. The development of the control system has introduced varieties of control strategies depending on the application. This paper reviews some control systems used for prosthetics, orthotics, and exoskeletons. The advantages and limitations of different control systems for particular applications have been discussed and presented in a comparative manner to help in deciding the appropriate method for pertinent application.
    Matched MeSH terms: Artificial Limbs*
  12. Ali S, Osman NA, Razak A, Hussain S, Wan Abas WA
    Eur J Phys Rehabil Med, 2015 Feb;51(1):31-7.
    PMID: 24963603
    Lower limb amputee's are greatly affected in dealing with the environmental barriers such as ramps and stairs and reported high interface pressure between the residual limb and socket/liner. Interface pressure between the residual limb and socket/liner can affect the satisfaction and use of the prosthesis. Until now, little attention has been paid to interface pressure between socket and stump during ramp negotiation and its effect on amputee's satisfaction.
    Matched MeSH terms: Artificial Limbs*
  13. Eshraghi A, Abu Osman NA, Gholizadeh H, Ali S, Abas WA
    Am J Phys Med Rehabil, 2015 Jan;94(1):1-10.
    PMID: 24919079 DOI: 10.1097/PHM.0000000000000134
    This study aimed to compare the effects of different suspension methods on the interface stress inside the prosthetic sockets of transtibial amputees when negotiating ramps and stairs.
    Matched MeSH terms: Artificial Limbs*
  14. Abd Razak NA, Abu Osman NA, Wan Abas WA
    Disabil Rehabil Assist Technol, 2013 May;8(3):255-60.
    PMID: 22830946 DOI: 10.3109/17483107.2012.704654
    This study examined the kinematic differences between a body-powered prosthesis and a biomechatronics prosthesis as a transradial amputee performed activities that involve flexion/extension and supination/pronation of the wrist.
    Matched MeSH terms: Artificial Limbs*
  15. Eshraghi A, Osman NA, Gholizadeh H, Karimi M, Ali S
    Prosthet Orthot Int, 2012 Mar;36(1):15-24.
    PMID: 22269941 DOI: 10.1177/0309364611431625
    One of the main indicators of the suspension system efficiency in lower limb prostheses is vertical displacement or pistoning within the socket. Decreasing pistoning and introducing an effective system for evaluating pistoning could contribute to the amputees' rehabilitation process.
    Matched MeSH terms: Artificial Limbs*
  16. Gholizadeh H, Abu Osman NA, Lúvíksdóttir Á, Eshraghi A, Kamyab M, Wan Abas WA
    Prosthet Orthot Int, 2011 Dec;35(4):360-4.
    PMID: 21975850 DOI: 10.1177/0309364611423130
    Good suspension lessens the pistoning (vertical displacement) of the residual limb inside the prosthetic socket. Several methods are used for measuring the pistoning.
    Matched MeSH terms: Artificial Limbs*
  17. Eshraghi A, Abu Osman NA, Karimi MT, Gholizadeh H, Ali S, Wan Abas WA
    Am J Phys Med Rehabil, 2012 Dec;91(12):1028-38.
    PMID: 23168378 DOI: 10.1097/PHM.0b013e318269d82a
    The objectives of this study were to compare the effects of a newly designed magnetic suspension system with that of two existing suspension methods on pistoning inside the prosthetic socket and to compare satisfaction and perceived problems among transtibial amputees.
    Matched MeSH terms: Artificial Limbs*
  18. Gholizadeh H, Abu Osman NA, Eshraghi A, Ali S, Sævarsson SK, Wan Abas WA, et al.
    J Rehabil Res Dev, 2012;49(9):1321-30.
    PMID: 23408214
    Poor suspension increases slippage of the residual limb inside the socket during ambulation. The main purpose of this article is to evaluate the pistoning at the prosthetic liner-socket interface during gait and assess patients' satisfaction with two different liners. Two prostheses with seal-in and locking liners were fabricated for each of the 10 subjects with transtibial amputation. The Vicon motion system was used to measure the pistoning during gait. The subjects were also asked to complete a Prosthesis Evaluation Questionnaire. The results revealed higher pistoning inside the socket during gait with the locking liner than with the seal-in liner (p < 0.05). The overall satisfaction with the locking liner was higher (p < 0.05) because of the relative ease with which the patients could don and doff the device. As such, pistoning may not be the main factor that determines patients' overall satisfaction with the prosthesis and other factors may also contribute to comfort and satisfaction with prostheses. The article also verifies the feasibility of the Vicon motion system for measuring pistoning during gait.
    Matched MeSH terms: Artificial Limbs*
  19. Karim HHA, Chern PM
    Med J Malaysia, 2020 09;75(5):519-524.
    PMID: 32918420
    INTRODUCTION: Increasing numbers of limb amputation are performed globally and in Malaysia due to the rise of complications because of Diabetes Mellitus (DM). Limb amputation influences many aspects of an individual's life, and prosthesis restoration is one of the primary rehabilitation goals to help amputees resume daily activities. As limited information is available in Malaysia, this study aims to determine the socio-demographic, clinical characteristics and prosthesis usage among the amputees.

    METHODS: A cross-sectional study using self-developed survey form was conducted at 13 Medical Rehabilitation Clinics in Malaysia among 541 upper and lower limb amputees of any duration and cause.

    RESULTS: The study population had a mean age of 54 years. Majority were males, Malays, married and had completed secondary school. About 70% of amputations were performed due to DM complications and at transtibial level. Fifty-eight percent of unilateral lower limb amputees were using prosthesis with a mean (standard deviation) of 6.48 (±4.55) hours per day. Time since amputation was the true factor associated with prosthesis usage. Longer hours of prosthesis use per day was positively correlated with longer interval after prosthesis restoration (r=0.467).

    CONCLUSION: Higher aetiology of DM and lower prosthesis usage among amputees may be because of high prevalence of DM in Malaysia. The prosthesis usage and hours of use per day were low compared to the international reports, which may be influenced by sampling location and time since amputation. Nevertheless, this is a novel multicentre study on the characteristics and prosthesis usage of amputees. Hopefully, this research will assist to support, facilitate and promote prosthesis rehabilitation in Malaysia.

    Matched MeSH terms: Artificial Limbs*
  20. Noroozi S, Ong ZC, Khoo SY, Aslani N, Sewell P
    Prosthet Orthot Int, 2019 Feb;43(1):62-70.
    PMID: 30051756 DOI: 10.1177/0309364618789449
    BACKGROUND:: The current method of prescribing composite running-specific energy-storing-and-returning feet is subjective and is based only on the amputee's static body weight/mass.

    OBJECTIVES:: The aim was to investigate their dynamic characteristics and create a relationship between these dynamic data and the prescription of foot.

    STUDY DESIGN:: Experimental Assessment.

    METHODS:: This article presents the modal analysis results of the full range of Össur Flex-Run™ running feet that are commercially available (1LO-9LO) using experimental modal analysis technique under a constant mass at 53 kg and boundary condition.

    RESULTS:: It was shown that both the undamped natural frequency and stiffness increase linearly from the lowest to the highest stiffness category of foot which allows for a more informed prescription of foot when tuning to a matched natural frequency. The low damping characteristics determined experimentally that ranged between 1.5% and 2.0% indicates that the feet require less input energy to maintain the steady-state cyclic motion before take-off from the ground. An analysis of the mode shapes also showed a unique design feature of these feet that is hypothesised to enhance their performance.

    CONCLUSION:: A better understanding of dynamic characteristics of the feet can help tune the feet to the user's requirements in promoting a better gait performance.

    CLINICAL RELEVANCE: The dynamic data determined from this study are needed to better inform the amputees in predicting the natural frequency of the foot prescribed. The amputees can intuitively tune the cyclic body rhythm during walking or running to match with the natural frequency. This could eventually promote a better gait performance.

    Matched MeSH terms: Artificial Limbs*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links