Displaying publications 21 - 40 of 45 in total

Abstract:
Sort:
  1. Ibnat N, Chowdhury EH
    Sci Rep, 2023 Jan 11;13(1):536.
    PMID: 36631481 DOI: 10.1038/s41598-022-25511-9
    Gene augmentation therapy entails replacement of the abnormal tumor suppressor genes in cancer cells. In this study, we performed gene augmentation for BRCA1/2 tumor suppressors in order to retard tumor development in breast cancer mouse model. We formulated inorganic carbonate apatite (CA) nanoparticles (NPs) to carry and deliver the purified BRCA1/2 gene- bearing plasmid DNA both in vitro and in vivo. The outcome of BRCA1/2 plasmid-loaded NPs delivery on cellular viability of three breast cancer cell lines such as MCF-7, MDA-MB-231 and 4T1 were evaluated by MTT assay. The result in MCF-7 cell line exhibited that transfection of BRCA 1/2 plasmids with CA NPs significantly reduced cancer cell growth in comparison to control group. Moreover, we noticed a likely pattern of cellular cytotoxicity in 4T1 murine cancer cell line. Following transfection with BRCA1 plasmid-loaded NPs, and Western blot analysis, a notable reduction in the phospho-MAPK protein of MAPK signaling pathway was detected, revealing reduced growth signal. Furthermore, in vivo study in 4T1 induced breast cancer mouse model showed that the tumor growth rate and final volume were decreased significantly in the mouse group treated intravenously with BRCA1 + NPs and BRCA2 + NPs formulations. Our results established that BRCA1/2 plasmids incorporated into CA NPs mitigated breast tumor growth, signifying their application in the therapy for breast cancer.
    Matched MeSH terms: BRCA1 Protein/genetics
  2. Parsons MT, Tudini E, Li H, Hahnen E, Wappenschmidt B, Feliubadaló L, et al.
    Hum Mutat, 2019 Sep;40(9):1557-1578.
    PMID: 31131967 DOI: 10.1002/humu.23818
    The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification.
    Matched MeSH terms: BRCA1 Protein/genetics*
  3. Li S, Silvestri V, Leslie G, Rebbeck TR, Neuhausen SL, Hopper JL, et al.
    J Clin Oncol, 2022 May 10;40(14):1529-1541.
    PMID: 35077220 DOI: 10.1200/JCO.21.02112
    PURPOSE: To provide precise age-specific risk estimates of cancers other than female breast and ovarian cancers associated with pathogenic variants (PVs) in BRCA1 and BRCA2 for effective cancer risk management.

    METHODS: We used data from 3,184 BRCA1 and 2,157 BRCA2 families in the Consortium of Investigators of Modifiers of BRCA1/2 to estimate age-specific relative (RR) and absolute risks for 22 first primary cancer types adjusting for family ascertainment.

    RESULTS: BRCA1 PVs were associated with risks of male breast (RR = 4.30; 95% CI, 1.09 to 16.96), pancreatic (RR = 2.36; 95% CI, 1.51 to 3.68), and stomach (RR = 2.17; 95% CI, 1.25 to 3.77) cancers. Associations with colorectal and gallbladder cancers were also suggested. BRCA2 PVs were associated with risks of male breast (RR = 44.0; 95% CI, 21.3 to 90.9), stomach (RR = 3.69; 95% CI, 2.40 to 5.67), pancreatic (RR = 3.34; 95% CI, 2.21 to 5.06), and prostate (RR = 2.22; 95% CI, 1.63 to 3.03) cancers. The stomach cancer RR was higher for females than males (6.89 v 2.76; P = .04). The absolute risks to age 80 years ranged from 0.4% for male breast cancer to approximately 2.5% for pancreatic cancer for BRCA1 carriers and from approximately 2.5% for pancreatic cancer to 27% for prostate cancer for BRCA2 carriers.

    CONCLUSION: In addition to female breast and ovarian cancers, BRCA1 and BRCA2 PVs are associated with increased risks of male breast, pancreatic, stomach, and prostate (only BRCA2 PVs) cancers, but not with the risks of other previously suggested cancers. The estimated age-specific risks will refine cancer risk management in men and women with BRCA1/2 PVs.

    Matched MeSH terms: BRCA1 Protein/genetics
  4. Chi KN, Sandhu S, Smith MR, Attard G, Saad M, Olmos D, et al.
    Ann Oncol, 2023 Sep;34(9):772-782.
    PMID: 37399894 DOI: 10.1016/j.annonc.2023.06.009
    BACKGROUND: Patients with metastatic castration-resistant prostate cancer (mCRPC) and BRCA alterations have poor outcomes. MAGNITUDE found patients with homologous recombination repair gene alterations (HRR+), particularly BRCA1/2, benefit from first-line therapy with niraparib plus abiraterone acetate and prednisone (AAP). Here we report longer follow-up from the second prespecified interim analysis (IA2).

    PATIENTS AND METHODS: Patients with mCRPC were prospectively identified as HRR+ with/without BRCA1/2 alterations and randomized 1 : 1 to niraparib (200 mg orally) plus AAP (1000 mg/10 mg orally) or placebo plus AAP. At IA2, secondary endpoints [time to symptomatic progression, time to initiation of cytotoxic chemotherapy, overall survival (OS)] were assessed.

    RESULTS: Overall, 212 HRR+ patients received niraparib plus AAP (BRCA1/2 subgroup, n = 113). At IA2 with 24.8 months of median follow-up in the BRCA1/2 subgroup, niraparib plus AAP significantly prolonged radiographic progression-free survival {rPFS; blinded independent central review; median rPFS 19.5 versus 10.9 months; hazard ratio (HR) = 0.55 [95% confidence interval (CI) 0.39-0.78]; nominal P = 0.0007} consistent with the first prespecified interim analysis. rPFS was also prolonged in the total HRR+ population [HR = 0.76 (95% CI 0.60-0.97); nominal P = 0.0280; median follow-up 26.8 months]. Improvements in time to symptomatic progression and time to initiation of cytotoxic chemotherapy were observed with niraparib plus AAP. In the BRCA1/2 subgroup, the analysis of OS with niraparib plus AAP demonstrated an HR of 0.88 (95% CI 0.58-1.34; nominal P = 0.5505); the prespecified inverse probability censoring weighting analysis of OS, accounting for imbalances in subsequent use of poly adenosine diphosphate-ribose polymerase inhibitors and other life-prolonging therapies, demonstrated an HR of 0.54 (95% CI 0.33-0.90; nominal P = 0.0181). No new safety signals were observed.

    CONCLUSIONS: MAGNITUDE, enrolling the largest BRCA1/2 cohort in first-line mCRPC to date, demonstrated improved rPFS and other clinically relevant outcomes with niraparib plus AAP in patients with BRCA1/2-altered mCRPC, emphasizing the importance of identifying this molecular subset of patients.

    Matched MeSH terms: BRCA1 Protein/genetics
  5. Li H, Peng Z, Zhu J, Zhao W, Huang Y, An R, et al.
    BMC Med, 2024 May 16;22(1):199.
    PMID: 38755585 DOI: 10.1186/s12916-024-03409-9
    BACKGROUND: The prospective phase III multi-centre L-MOCA trial (NCT03534453) has demonstrated the encouraging efficacy and manageable safety profile of olaparib maintenance therapy in the Asian (mainly Chinese) patients with platinum-sensitive relapsed ovarian cancer (PSROC). In this study, we report the preplanned exploratory biomarker analysis of the L-MOCA trial, which investigated the effects of homologous recombination deficiency (HRD) and programmed cell death ligand 1 (PD-L1) expression on olaparib efficacy.

    METHODS: HRD status was determined using the ACTHRD assay, an enrichment-based targeted next-generation sequencing assay. PD-L1 expression was assessed by SP263 immunohistochemistry assay. PD-L1 expression positivity was defined by the PD-L1 expression on ≥ 1% of immune cells. Kaplan-Meier method was utilised to analyse progression-free survival (PFS).

    RESULTS: This exploratory biomarker analysis included 225 patients and tested HRD status [N = 190; positive, N = 125 (65.8%)], PD-L1 expression [N = 196; positive, N = 56 (28.6%)], and BRCA1/2 mutation status (N = 219). The HRD-positive patients displayed greater median PFS than the HRD-negative patients [17.9 months (95% CI: 14.5-22.1) versus 9.2 months (95% CI: 7.5-13.8)]. PD-L1 was predominantly expressed on immune cells. Positive PD-L1 expression on immune cells was associated with shortened median PFS in the patients with germline BRCA1/2 mutations [14.5 months (95% CI: 7.4-18.2) versus 22.2 months (95% CI: 18.3-NA)]. Conversely, positive PD-L1 expression on immune cells was associated with prolonged median PFS in the patients with wild-type BRCA1/2 [20.9 months (95% CI: 13.9-NA) versus 8.3 months (95% CI: 6.7-13.8)].

    CONCLUSIONS: HRD remained an effective biomarker for enhanced olaparib efficacy in the Asian patients with PSROC. Positive PD-L1 expression was associated with decreased olaparib efficacy in the patients with germline BRCA1/2 mutations but associated with improved olaparib efficacy in the patients with wild-type BRCA1/2.

    TRIAL REGISTRATION: NCT03534453. Registered at May 23, 2018.

    Matched MeSH terms: BRCA1 Protein/genetics
  6. Sharifah NA, Nurismah MI, Lee HC, Aisyah AN, Clarence-Ko CH, Naqiyah I, et al.
    Cancer Epidemiol, 2010 Aug;34(4):442-7.
    PMID: 20451485 DOI: 10.1016/j.canep.2010.04.010
    The incidence of breast cancer has been on the rise in Malaysia. It is suggested that a subset of breast cancer cases were associated with germline mutation in breast cancer susceptibility (BRCA) genes. Most of the BRCA mutations reported in Malaysia were point mutations, small deletions and insertions. Here we report the first study of BRCA large genomic rearrangements (LGRs) in Malaysia. We aimed to detect the presence of LGRs in the BRCA genes of Malaysian patients with breast cancer.
    Matched MeSH terms: BRCA1 Protein/genetics*
  7. Khoo AS, Balraj P, Volpi L, Nair S
    Hum Mutat, 2000 May;15(5):485.
    PMID: 10790221
    Matched MeSH terms: BRCA1 Protein/genetics*
  8. Couch FJ, Kuchenbaecker KB, Michailidou K, Mendoza-Fandino GA, Nord S, Lilyquist J, et al.
    Nat Commun, 2016 Apr 27;7:11375.
    PMID: 27117709 DOI: 10.1038/ncomms11375
    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.
    Matched MeSH terms: BRCA1 Protein/genetics
  9. Liu J, Lončar I, Collée JM, Bolla MK, Dennis J, Michailidou K, et al.
    Sci Rep, 2016 Nov 15;6:36874.
    PMID: 27845421 DOI: 10.1038/srep36874
    NBS1, also known as NBN, plays an important role in maintaining genomic stability. Interestingly, rs2735383 G > C, located in a microRNA binding site in the 3'-untranslated region (UTR) of NBS1, was shown to be associated with increased susceptibility to lung and colorectal cancer. However, the relation between rs2735383 and susceptibility to breast cancer is not yet clear. Therefore, we genotyped rs2735383 in 1,170 familial non-BRCA1/2 breast cancer cases and 1,077 controls using PCR-based restriction fragment length polymorphism (RFLP-PCR) analysis, but found no association between rs2735383CC and breast cancer risk (OR = 1.214, 95% CI = 0.936-1.574, P = 0.144). Because we could not exclude a small effect size due to a limited sample size, we further analyzed imputed rs2735383 genotypes (r2 > 0.999) of 47,640 breast cancer cases and 46,656 controls from the Breast Cancer Association Consortium (BCAC). However, rs2735383CC was not associated with overall breast cancer risk in European (OR = 1.014, 95% CI = 0.969-1.060, P = 0.556) nor in Asian women (OR = 0.998, 95% CI = 0.905-1.100, P = 0.961). Subgroup analyses by age, age at menarche, age at menopause, menopausal status, number of pregnancies, breast feeding, family history and receptor status also did not reveal a significant association. This study therefore does not support the involvement of the genotype at NBS1 rs2735383 in breast cancer susceptibility.
    Matched MeSH terms: BRCA1 Protein/genetics
  10. Patel VL, Busch EL, Friebel TM, Cronin A, Leslie G, McGuffog L, et al.
    Cancer Res, 2020 Feb 01;80(3):624-638.
    PMID: 31723001 DOI: 10.1158/0008-5472.CAN-19-1840
    Pathogenic sequence variants (PSV) in BRCA1 or BRCA2 (BRCA1/2) are associated with increased risk and severity of prostate cancer. We evaluated whether PSVs in BRCA1/2 were associated with risk of overall prostate cancer or high grade (Gleason 8+) prostate cancer using an international sample of 65 BRCA1 and 171 BRCA2 male PSV carriers with prostate cancer, and 3,388 BRCA1 and 2,880 BRCA2 male PSV carriers without prostate cancer. PSVs in the 3' region of BRCA2 (c.7914+) were significantly associated with elevated risk of prostate cancer compared with reference bin c.1001-c.7913 [HR = 1.78; 95% confidence interval (CI), 1.25-2.52; P = 0.001], as well as elevated risk of Gleason 8+ prostate cancer (HR = 3.11; 95% CI, 1.63-5.95; P = 0.001). c.756-c.1000 was also associated with elevated prostate cancer risk (HR = 2.83; 95% CI, 1.71-4.68; P = 0.00004) and elevated risk of Gleason 8+ prostate cancer (HR = 4.95; 95% CI, 2.12-11.54; P = 0.0002). No genotype-phenotype associations were detected for PSVs in BRCA1. These results demonstrate that specific BRCA2 PSVs may be associated with elevated risk of developing aggressive prostate cancer. SIGNIFICANCE: Aggressive prostate cancer risk in BRCA2 mutation carriers may vary according to the specific BRCA2 mutation inherited by the at-risk individual.
    Matched MeSH terms: BRCA1 Protein/genetics*
  11. Qian F, Wang S, Mitchell J, McGuffog L, Barrowdale D, Leslie G, et al.
    J Natl Cancer Inst, 2019 Apr 01;111(4):350-364.
    PMID: 30312457 DOI: 10.1093/jnci/djy132
    BACKGROUND: BRCA1/2 mutations confer high lifetime risk of breast cancer, although other factors may modify this risk. Whether height or body mass index (BMI) modifies breast cancer risk in BRCA1/2 mutation carriers remains unclear.

    METHODS: We used Mendelian randomization approaches to evaluate the association of height and BMI on breast cancer risk, using data from the Consortium of Investigators of Modifiers of BRCA1/2 with 14 676 BRCA1 and 7912 BRCA2 mutation carriers, including 11 451 cases of breast cancer. We created a height genetic score using 586 height-associated variants and a BMI genetic score using 93 BMI-associated variants. We examined both observed and genetically determined height and BMI with breast cancer risk using weighted Cox models. All statistical tests were two-sided.

    RESULTS: Observed height was positively associated with breast cancer risk (HR = 1.09 per 10 cm increase, 95% confidence interval [CI] = 1.0 to 1.17; P = 1.17). Height genetic score was positively associated with breast cancer, although this was not statistically significant (per 10 cm increase in genetically predicted height, HR = 1.04, 95% CI = 0.93 to 1.17; P = .47). Observed BMI was inversely associated with breast cancer risk (per 5 kg/m2 increase, HR = 0.94, 95% CI = 0.90 to 0.98; P = .007). BMI genetic score was also inversely associated with breast cancer risk (per 5 kg/m2 increase in genetically predicted BMI, HR = 0.87, 95% CI = 0.76 to 0.98; P = .02). BMI was primarily associated with premenopausal breast cancer.

    CONCLUSION: Height is associated with overall breast cancer and BMI is associated with premenopausal breast cancer in BRCA1/2 mutation carriers. Incorporating height and BMI, particularly genetic score, into risk assessment may improve cancer management.

    Matched MeSH terms: BRCA1 Protein/genetics*
  12. Dörk T, Peterlongo P, Mannermaa A, Bolla MK, Wang Q, Dennis J, et al.
    Sci Rep, 2019 08 29;9(1):12524.
    PMID: 31467304 DOI: 10.1038/s41598-019-48804-y
    Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95%CI 0.44-1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants.
    Matched MeSH terms: BRCA1 Protein/genetics
  13. Kuchenbaecker KB, Ramus SJ, Tyrer J, Lee A, Shen HC, Beesley J, et al.
    Nat Genet, 2015 Feb;47(2):164-71.
    PMID: 25581431 DOI: 10.1038/ng.3185
    Genome-wide association studies (GWAS) have identified 12 epithelial ovarian cancer (EOC) susceptibility alleles. The pattern of association at these loci is consistent in BRCA1 and BRCA2 mutation carriers who are at high risk of EOC. After imputation to 1000 Genomes Project data, we assessed associations of 11 million genetic variants with EOC risk from 15,437 cases unselected for family history and 30,845 controls and from 15,252 BRCA1 mutation carriers and 8,211 BRCA2 mutation carriers (3,096 with ovarian cancer), and we combined the results in a meta-analysis. This new study design yielded increased statistical power, leading to the discovery of six new EOC susceptibility loci. Variants at 1p36 (nearest gene, WNT4), 4q26 (SYNPO2), 9q34.2 (ABO) and 17q11.2 (ATAD5) were associated with EOC risk, and at 1p34.3 (RSPO1) and 6p22.1 (GPX6) variants were specifically associated with the serous EOC subtype, all with P < 5 × 10(-8). Incorporating these variants into risk assessment tools will improve clinical risk predictions for BRCA1 and BRCA2 mutation carriers.
    Matched MeSH terms: BRCA1 Protein/genetics*
  14. Li J, Ugalde-Morales E, Wen WX, Decker B, Eriksson M, Torstensson A, et al.
    Cancer Res, 2018 11 01;78(21):6329-6338.
    PMID: 30385609 DOI: 10.1158/0008-5472.CAN-18-1018
    Genetic variants that increase breast cancer risk can be rare or common. This study tests whether the genetic risk stratification of breast cancer by rare and common variants in established loci can discriminate tumors with different biology, patient survival, and mode of detection. Multinomial logistic regression tested associations between genetic risk load [protein-truncating variant (PTV) carriership in 31 breast cancer predisposition genes-or polygenic risk score (PRS) using 162 single-nucleotide polymorphisms], tumor characteristics, and mode of detection (OR). Ten-year breast cancer-specific survival (HR) was estimated using Cox regression models. In this unselected cohort of 5,099 patients with breast cancer diagnosed in Sweden between 2001 and 2008, PTV carriers (n = 597) were younger and associated with more aggressive tumor phenotypes (ER-negative, large size, high grade, high proliferation, luminal B, and basal-like subtype) and worse outcome (HR, 1.65; 1.16-2.36) than noncarriers. After excluding 92 BRCA1/2 carriers, PTV carriership remained associated with high grade and worse survival (HR, 1.76; 1.21-2.56). In 5,007 BRCA1/2 noncarriers, higher PRS was associated with less aggressive tumor characteristics (ER-positive, PR-positive, small size, low grade, low proliferation, and luminal A subtype). Among patients with low mammographic density (<25%), non-BRCA1/2 PTV carriers were more often interval than screen-detected breast cancer (OR, 1.89; 1.12-3.21) than noncarriers. In contrast, higher PRS was associated with lower risk of interval compared with screen-detected cancer (OR, 0.77; 0.64-0.93) in women with low mammographic density. These findings suggest that rare and common breast cancer susceptibility loci are differentially associated with tumor characteristics, survival, and mode of detection.Significance: These findings offer the potential to improve screening practices for breast cancer by providing a deeper understanding of how risk variants affect disease progression and mode of detection. Cancer Res; 78(21); 6329-38. ©2018 AACR.
    Matched MeSH terms: BRCA1 Protein/genetics
  15. Lee DS, Yoon SY, Looi LM, Kang P, Kang IN, Sivanandan K, et al.
    Breast Cancer Res, 2012;14(2):R66.
    PMID: 22507745
    Germline TP53 mutations cause an increased risk to early-onset breast cancer in Li-Fraumeni syndrome (LFS) families and the majority of carriers identified through breast cancer cohorts have LFS or Li-Fraumeni-like (LFL) features. However, in Asia and in many low resource settings, it is challenging to obtain accurate family history and we, therefore, sought to determine whether the presence of early-onset breast cancer is an appropriate selection criteria for germline TP53 testing.
    Matched MeSH terms: BRCA1 Protein/genetics*
  16. Milne RL, Kuchenbaecker KB, Michailidou K, Beesley J, Kar S, Lindström S, et al.
    Nat Genet, 2017 Dec;49(12):1767-1778.
    PMID: 29058716 DOI: 10.1038/ng.3785
    Most common breast cancer susceptibility variants have been identified through genome-wide association studies (GWAS) of predominantly estrogen receptor (ER)-positive disease. We conducted a GWAS using 21,468 ER-negative cases and 100,594 controls combined with 18,908 BRCA1 mutation carriers (9,414 with breast cancer), all of European origin. We identified independent associations at P < 5 × 10-8 with ten variants at nine new loci. At P < 0.05, we replicated associations with 10 of 11 variants previously reported in ER-negative disease or BRCA1 mutation carrier GWAS and observed consistent associations with ER-negative disease for 105 susceptibility variants identified by other studies. These 125 variants explain approximately 16% of the familial risk of this breast cancer subtype. There was high genetic correlation (0.72) between risk of ER-negative breast cancer and breast cancer risk for BRCA1 mutation carriers. These findings may lead to improved risk prediction and inform further fine-mapping and functional work to better understand the biological basis of ER-negative breast cancer.
    Matched MeSH terms: BRCA1 Protein/genetics*
  17. Kang P, Mariapun S, Phuah SY, Lim LS, Liu J, Yoon SY, et al.
    Breast Cancer Res Treat, 2010 Nov;124(2):579-84.
    PMID: 20617377 DOI: 10.1007/s10549-010-1018-5
    Early studies of genetic predisposition due to the BRCA1 and BRCA2 genes have focused largely on sequence alterations, but it has now emerged that 4-28% of inherited mutations in the BRCA genes may be due to large genomic rearrangements of these genes. However, to date, there have been relatively few studies of large genomic rearrangements in Asian populations. We have conducted a full sequencing and large genomic rearrangement analysis (using Multiplex Ligation-dependent Probe Amplification, MLPA) of 324 breast cancer patients who were selected from a multi-ethnic hospital-based cohort on the basis of age of onset of breast cancer and/or family history. Three unrelated individuals were found to have large genomic rearrangements: 2 in BRCA1 and 1 in BRCA2, which accounts for 2/24 (8%) of the total mutations detected in BRCA1 and 1/23 (4%) of the mutations in BRCA2 detected in this cohort. Notably, the family history of the individuals with these mutations is largely unremarkable suggesting that family history alone is a poor predictor of mutation status in Asian families. In conclusion, this study in a multi-ethnic (Malay, Chinese, Indian) cohort suggests that large genomic rearrangements are present at a low frequency but should nonetheless be included in the routine testing for BRCA1 and BRCA2.
    Matched MeSH terms: BRCA1 Protein/genetics*
  18. Ng PS, Wen WX, Fadlullah MZ, Yoon SY, Lee SY, Thong MK, et al.
    Clin Genet, 2016 10;90(4):315-23.
    PMID: 26757417 DOI: 10.1111/cge.12735
    Although an association between protein-truncating variants and breast cancer risk has been established for 11 genes, only alterations in BRCA1, BRCA2, TP53 and PALB2 have been reported in Asian populations. Given that the age of onset of breast cancer is lower in Asians, it is estimated that inherited predisposition to breast cancer may be more significant. To determine the potential utility of panel testing, we investigated the prevalence of germline alterations in 11 established and 4 likely breast cancer genes in a cross-sectional hospital-based cohort of 108 moderate to high-risk breast cancer patients using targeted next generation sequencing. Twenty patients (19%) were identified to carry deleterious mutations, of whom 13 (12%) were in the BRCA1 or BRCA2, 6 (6%) were in five other known breast cancer predisposition genes and 1 patient had a mutation in both BRCA2 and BARD1. Our study shows that BRCA1 and BRCA2 account for the majority of genetic predisposition to breast cancer in our cohort of Asian women. Although mutations in other known breast cancer genes are found, the functional significance and breast cancer risk have not yet been determined, thus limiting the clinical utility of panel testing in Asian populations.
    Matched MeSH terms: BRCA1 Protein/genetics
  19. Hasmad HN, Lai KN, Wen WX, Park DJ, Nguyen-Dumont T, Kang PCE, et al.
    Gynecol Oncol, 2016 05;141(2):318-322.
    PMID: 26541979 DOI: 10.1016/j.ygyno.2015.11.001
    OBJECTIVE: Despite the discovery of breast and ovarian cancer predisposition genes BRCA1 and BRCA2 more than two decades ago, almost all the available data relate to women of European ancestry, with only a handful of studies in Asian populations. In this study, we determined the frequency of germline alterations in BRCA1 and BRCA2 in ovarian cancer patients from a multi-ethnic cross-sectional cohort of Asian ovarian cancer patients from Malaysia.

    METHODS: From October 2008 to February 2015, we established a hospital-based cohort of ovarian cancer patients and the germline status of all 218 women with invasive epithelial ovarian cancer was tested using targeted amplification and sequencing of the intron-exon junctions and exonic sequences of BRCA1, BRCA2, PALB2 and TP53.

    RESULTS: BRCA1 and BRCA2 mutations were found in 8% (17 cases) and 3% (7 cases) of the ovarian cancer patients, respectively. Mutation carriers were diagnosed at a similar age to non-carriers, but were more likely to be Indian, have serous ovarian cancer, and have more relatives with breast or ovarian cancer. Nonetheless, 42% (10/24) of mutation carriers did not have any family history of breast or ovarian cancer and offering genetic counselling and genetic testing only to women with family history would mean that 35% (6/17) of BRCA1 mutation carriers and 57% (4/7) of BRCA2 mutation carriers would not be offered genetic testing.

    CONCLUSIONS: Our data suggest that, similar to Caucasians, a significant proportion of Asian ovarian cancer was attributed to germline mutations in BRCA1 and to a lesser extent in BRCA2.

    Matched MeSH terms: BRCA1 Protein/genetics
  20. Kemp Z, Turnbull A, Yost S, Seal S, Mahamdallie S, Poyastro-Pearson E, et al.
    JAMA Netw Open, 2019 05 03;2(5):e194428.
    PMID: 31125106 DOI: 10.1001/jamanetworkopen.2019.4428
    Importance: Increasing BRCA1 and BRCA2 (collectively termed herein as BRCA) gene testing is required to improve cancer management and prevent BRCA-related cancers.

    Objective: To evaluate mainstream genetic testing using cancer-based criteria in patients with cancer.

    Design, Setting, and Participants: A quality improvement study and cost-effectiveness analysis of different BRCA testing selection criteria and access procedures to evaluate feasibility, acceptability, and mutation detection performance was conducted at the Royal Marsden National Health Service Foundation Trust as part of the Mainstreaming Cancer Genetics (MCG) Programme. Participants included 1184 patients with cancer who were undergoing genetic testing between September 1, 2013, and February 28, 2017.

    Main Outcomes and Measures: Mutation rates, quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratios were the primary outcomes.

    Results: Of the 1184 patients (1158 women [97.8%]) meeting simple cancer-based criteria, 117 had a BRCA mutation (9.9%). The mutation rate was similar in retrospective United Kingdom (10.2% [235 of 2294]) and prospective Malaysian (9.7% [103 of 1061]) breast cancer studies. If traditional family history criteria had been used, more than 50% of the mutation-positive individuals would have been missed. Of the 117 mutation-positive individuals, 115 people (98.3%) attended their genetics appointment and cascade to relatives is underway in all appropriate families (85 of 85). Combining with the equivalent ovarian cancer study provides 5 simple cancer-based criteria for BRCA testing with a 10% mutation rate: (1) ovarian cancer; (2) breast cancer diagnosed when patients are 45 years or younger; (3) 2 primary breast cancers, both diagnosed when patients are 60 years or younger; (4) triple-negative breast cancer; and (5) male breast cancer. A sixth criterion-breast cancer plus a parent, sibling, or child with any of the other criteria-can be added to address family history. Criteria 1 through 5 are considered the MCG criteria, and criteria 1 through 6 are considered the MCGplus criteria. Testing using MCG or MCGplus criteria is cost-effective with cost-effectiveness ratios of $1330 per discounted QALYs and $1225 per discounted QALYs, respectively, and appears to lead to cancer and mortality reductions (MCG: 804 cancers, 161 deaths; MCGplus: 1020 cancers, 204 deaths per year over 50 years). Use of MCG or MCGplus criteria might allow detection of all BRCA mutations in patients with breast cancer in the United Kingdom through testing one-third of patients. Feedback questionnaires from 259 patients and 23 cancer team members (12 oncologists, 8 surgeons, and 3 nurse specialists) showed acceptability of the process with 100% of patients pleased they had genetic testing and 100% of cancer team members confident to approve patients for genetic testing. Use of MCGplus criteria also appeared to be time and resource efficient, requiring 95% fewer genetic consultations than the traditional process.

    Conclusions and Relevance: This study suggests that mainstream testing using simple, cancer-based criteria might be able to efficiently deliver consistent, cost-effective, patient-centered BRCA testing.

    Matched MeSH terms: BRCA1 Protein/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links