Displaying publications 21 - 23 of 23 in total

Abstract:
Sort:
  1. Lecarpentier J, Silvestri V, Kuchenbaecker KB, Barrowdale D, Dennis J, McGuffog L, et al.
    J Clin Oncol, 2017 Jul 10;35(20):2240-2250.
    PMID: 28448241 DOI: 10.1200/JCO.2016.69.4935
    Purpose BRCA1/2 mutations increase the risk of breast and prostate cancer in men. Common genetic variants modify cancer risks for female carriers of BRCA1/2 mutations. We investigated-for the first time to our knowledge-associations of common genetic variants with breast and prostate cancer risks for male carriers of BRCA1/ 2 mutations and implications for cancer risk prediction. Materials and Methods We genotyped 1,802 male carriers of BRCA1/2 mutations from the Consortium of Investigators of Modifiers of BRCA1/2 by using the custom Illumina OncoArray. We investigated the combined effects of established breast and prostate cancer susceptibility variants on cancer risks for male carriers of BRCA1/2 mutations by constructing weighted polygenic risk scores (PRSs) using published effect estimates as weights. Results In male carriers of BRCA1/2 mutations, PRS that was based on 88 female breast cancer susceptibility variants was associated with breast cancer risk (odds ratio per standard deviation of PRS, 1.36; 95% CI, 1.19 to 1.56; P = 8.6 × 10-6). Similarly, PRS that was based on 103 prostate cancer susceptibility variants was associated with prostate cancer risk (odds ratio per SD of PRS, 1.56; 95% CI, 1.35 to 1.81; P = 3.2 × 10-9). Large differences in absolute cancer risks were observed at the extremes of the PRS distribution. For example, prostate cancer risk by age 80 years at the 5th and 95th percentiles of the PRS varies from 7% to 26% for carriers of BRCA1 mutations and from 19% to 61% for carriers of BRCA2 mutations, respectively. Conclusion PRSs may provide informative cancer risk stratification for male carriers of BRCA1/2 mutations that might enable these men and their physicians to make informed decisions on the type and timing of breast and prostate cancer risk management.
    Matched MeSH terms: Genes, BRCA1*; Genes, BRCA2*
  2. Velapasamy S, Alex L, Chahil JK, Lye SH, Munretnam K, Hashim NA, et al.
    Genet Test Mol Biomarkers, 2013 Jan;17(1):62-8.
    PMID: 23113749 DOI: 10.1089/gtmb.2012.0223
    The identification of high-risk individuals can help to improve early cancer detection and patient survival. Risk assessment, however, can only be accomplished if the risk factors are known. To date, the genetic risk factors for ovarian cancer, other than mutations in the BRCA1/2 genes, have never been systematically explored in Malaysia. The present study aims to identify from a panel of cancer-associated single-nucleotide polymorphisms (SNPs), those associated with ovarian cancer risk in Malaysia.
    Matched MeSH terms: Genes, BRCA1
  3. Ibnat N, Chowdhury EH
    Sci Rep, 2023 Jan 11;13(1):536.
    PMID: 36631481 DOI: 10.1038/s41598-022-25511-9
    Gene augmentation therapy entails replacement of the abnormal tumor suppressor genes in cancer cells. In this study, we performed gene augmentation for BRCA1/2 tumor suppressors in order to retard tumor development in breast cancer mouse model. We formulated inorganic carbonate apatite (CA) nanoparticles (NPs) to carry and deliver the purified BRCA1/2 gene- bearing plasmid DNA both in vitro and in vivo. The outcome of BRCA1/2 plasmid-loaded NPs delivery on cellular viability of three breast cancer cell lines such as MCF-7, MDA-MB-231 and 4T1 were evaluated by MTT assay. The result in MCF-7 cell line exhibited that transfection of BRCA 1/2 plasmids with CA NPs significantly reduced cancer cell growth in comparison to control group. Moreover, we noticed a likely pattern of cellular cytotoxicity in 4T1 murine cancer cell line. Following transfection with BRCA1 plasmid-loaded NPs, and Western blot analysis, a notable reduction in the phospho-MAPK protein of MAPK signaling pathway was detected, revealing reduced growth signal. Furthermore, in vivo study in 4T1 induced breast cancer mouse model showed that the tumor growth rate and final volume were decreased significantly in the mouse group treated intravenously with BRCA1 + NPs and BRCA2 + NPs formulations. Our results established that BRCA1/2 plasmids incorporated into CA NPs mitigated breast tumor growth, signifying their application in the therapy for breast cancer.
    Matched MeSH terms: Genes, BRCA1
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links