Displaying publications 21 - 25 of 25 in total

Abstract:
Sort:
  1. Katayama T, Nagao N, Kasan NA, Khatoon H, Rahman NA, Takahashi K, et al.
    J Biotechnol, 2020 Nov 10;323:113-120.
    PMID: 32768414 DOI: 10.1016/j.jbiotec.2020.08.001
    We isolated fifty-two strains from the marine aquaculture ponds in Malaysia that were evaluated for their lipid production and ammonium tolerance and four isolates were selected as new ammonium tolerant microalgae with high-lipid production: TRG10-p102 Oocystis heteromucosa (Chlorophyceae); TRG10-p103 and TRG10-p105 Thalassiosira weissflogii (Bacillariophyceae); and TRG10-p201 Amphora coffeiformis (Bacillariophyceae). Eicosapentenoic acid (EPA) in three diatom strain was between 2.6 and 18.6 % of total fatty acids, which were higher than in O. heteromucosa. Only A. coffeiformi possessed arachidonic acid. Oocystis heteromucosa naturally grew at high ammonium concentrations (1.4-10 mM), whereas the growth of the other strains, T. weissflogii and A. coffeiformi, were visibly inhibited at high ammonium concentrations (>1.4 mM-NH4). However, two strains of T. weissflogii were able to grow at up to 10 mM-NH4 by gradually acclimating to higher ammonium concentrations. The ammonium tolerant strains, especially T. weissflogii which have high EPA contents, were identified as a valuable candidate for biomass production utilizing NH4-N media, such as ammonium-rich wastewater.
    Matched MeSH terms: Waste Water/microbiology*
  2. Nguyen TDP, Le TVA, Show PL, Nguyen TT, Tran MH, Tran TNT, et al.
    Bioresour Technol, 2019 Jan;272:34-39.
    PMID: 30308405 DOI: 10.1016/j.biortech.2018.09.146
    Microalgal bacterial flocs can be a promising approach for microalgae harvesting and wastewater treatment. The present study provides an insight on the bioflocs formation to enhance harvesting of Chlorella vulgaris and the removal of nutrients from seafood wastewater effluent. The results showed that the untreated seafood wastewater was the optimal culture medium for the cultivation and bioflocculation of C. vulgaris, with the flocculating activity of 92.0 ± 6.0%, total suspended solids removal of 93.0 ± 5.5%, and nutrient removal of 88.0 ± 2.2%. The bioflocs collected under this optimal condition contained dry matter of 107.2 ± 5.6 g·L-1 and chlorophyll content of 25.5 ± 0.2 mg·L-1. The results were promising when compared to those obtained from the auto-flocculation process that induced by the addition of calcium chloride and pH adjustment. Additionally, bacteria present in the wastewater aided to promote the formation of bioflocculation process.
    Matched MeSH terms: Waste Water/microbiology*
  3. Sarmin S, Ethiraj B, Islam MA, Ideris A, Yee CS, Khan MMR
    Sci Total Environ, 2019 Dec 10;695:133820.
    PMID: 31416036 DOI: 10.1016/j.scitotenv.2019.133820
    The petrochemical wastewater (PCW) from acrylic acid plants possesses a very high chemical oxygen demand (COD) due to the presence of acrylic acid along with other organic acids. The treatment of PCW by conventional aerobic and anaerobic methods is energy intensive. Therefore, the treatment of PCW with concurrent power generation by employing microbial fuel cell (MFC) could be a potential alternative to solve the energy and environmental issues. This study demonstrates the potentiality of PCW from acrylic acid plant with an initial COD of 45,000 mg L-1 generating maximum power density of 850 mW m-2 at a current density of 1500 mA m-2 using acclimatized anaerobic sludge (AS) as biocatalyst. The predominant microbes present in acclimatized AS were identified using Biolog GEN III analysis, which include the electrogenic genera namely Pseudomonas spp. and Bacillus spp. along with methanogenic archea Methanobacterium spp. The mechanism of electron transfer was elucidated by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) which clearly demonstrated the natural metabolite-based electron transfer across the electrode/biofilm/solution interface. The abundance of the electron shuttle metabolites was increased with the microbial growth in the bulk solution as well as in the biofilm leading to a high power generation. The COD removal efficiency and the coulombic efficiency (CE) were found to be 40% and 21%, respectively after 11 days of operation using initial COD of 45,000 mg L-1. The low COD removal efficiency could drastically be increased to 82% when the initial COD of PCW was 5000 mg L-1 generating a power density of 150 mW m-2. The current work proves the feasibility of the MFC for the treatment of acrylic acid plant PCW using acclimatized anaerobic sludge (AS) as a biocatalyst.
    Matched MeSH terms: Waste Water/microbiology
  4. Nguyen TDP, Tran TNT, Le TVA, Nguyen Phan TX, Show PL, Chia SR
    J Biosci Bioeng, 2019 Apr;127(4):492-498.
    PMID: 30416001 DOI: 10.1016/j.jbiosc.2018.09.004
    Nowadays, the pretreatment of wastewater prior to discharge is very important in various industries as the wastewater without any treatment contains high organic pollution loads that would pollute the receiving waterbody and potentially cause eutrophication and oxygen depletion to aquatic life. The reuse of seafood wastewater discharge in microalgae cultivation offers beneficial purposes such as reduced processing cost for wastewater treatment, replenishing ground water basin as well as financial savings for microalgae cultivation. In this paper, the cultivation of Chlorella vulgaris with an initial concentration of 0.01 ± 0.001 g⋅L-1 using seafood sewage discharge under sunlight and fluorescent illumination was investigated in laboratory-scale without adjusting mineral nutrients and pH. The ability of nutrient removal under different lighting conditions, the metabolism of C. vulgaris and new medium as well as the occurrence of auto-flocculation of microalgae biomass were evaluated for 14 days. The results showed that different illumination sources did not influence the microalgae growth, chemical oxygen demand (COD) and biochemical oxygen demand (BOD) significantly. However, the total nitrogen (total-N) and total phosphorus (total-P) contents of microalgae were sensitive to the illumination mode. The amount of COD, BOD, total-N and total-P were decreased by 88%, 81%, 95%, and 83% under sunlight mode and 81%, 74%, 79%, and 72% under fluorescent illumination, respectively. Furthermore, microalgae were auto-flocculated at the final days of cultivation with maximum biomass concentration of 0.49 ± 0.01 g⋅L-1, and the pH value had increased to pH 9.8 ± 0.1 under sunlight illumination.
    Matched MeSH terms: Waste Water/microbiology*
  5. Rahman RA, Molla AH, Fakhru'l-Razi A
    Environ Sci Pollut Res Int, 2014 Jan;21(2):1178-87.
    PMID: 23881591 DOI: 10.1007/s11356-013-1974-5
    Sustainable, environmental friendly, and safe disposal of sewage treatment plant (STP) sludge is a global expectation. Bioremediation performance was examined at different hydraulic retention times (HRT) in 3-10 days and organic loading rates (OLR) at 0.66-7.81 g chemical oxygen demand (COD) per liter per day, with mixed filamentous fungal (Aspergillus niger and Penicillium corylophilum) inoculation by liquid-state bioconversion (LSB) technique as a continuous process in large-scale bioreactor. Encouraging results were monitored in treated sludge by LSB continuous process. The highest removal of total suspended solid (TSS), turbidity, and COD were achieved at 98, 99, and 93%, respectively, at 10 days HRT compared to control. The minimum volatile suspended solid/suspended solid implies the quality of water, which was recorded 0.59 at 10 days and 0.72 at 3 days of HRT. In treated supernatant with 88% protein removal at 10 days of HRT indicates a higher magnitude of purification of treated sludge. The specific resistance to filtration (SRF) quantifies the performance of dewaterability; it was recorded minimum 0.049 × 10(12) m kg(-1) at 10 days of HRT, which was equivalent to 97% decrease of SRF. The lower OLR and higher HRT directly influenced the bioremediation and dewaterability of STP sludge in LSB process. The obtained findings imply encouraging message in continuing treatment of STP sludge, i.e., bioremediation of wastewater for environmental friendly disposal in near future.
    Matched MeSH terms: Waste Water/microbiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links