Displaying publications 381 - 400 of 857 in total

Abstract:
Sort:
  1. Douglas I
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1725-38.
    PMID: 11605617
    Investigations of land management impacts on hydrology are well developed in South-East Asia, having been greatly extended by national organizations in the last two decades. Regional collaborative efforts, such as the ASEAN-US watershed programme, have helped develop skills and long-running monitoring programmes. Work in different countries is significant for particular aspects: the powerful effects of both cyclones and landsliding in Taiwan, the significance of lahars in Java, of small-scale agriculture in Thailand and plantation establishment in Malaysia. Different aid programmes have contributed specialist knowledge such as British work on reservoir sedimentation, Dutch, Swedish and British work on softwood plantations and US work in hill-tribe agriculture. Much has been achieved through individual university research projects, including PhD and MSc theses. The net result is that for most countries there is now good information on changes in the rainfall-run-off relationship due to forest disturbance or conversion, some information on the impacts on sediment delivery and erosion of hillslopes, but relatively little about the dynamics and magnitude of nutrient losses. Improvements have been made in the ability to model the consequences of forest conversion and of selective logging and exciting prospects exist for the development of better predictions of transfer of water from the hillslopes to the stream channels using techniques such as multilevel modelling. Understanding of the processes involved has advanced through the detailed monitoring made possible at permanent field stations such as that at Danum Valley, Sabah.
    Matched MeSH terms: Climate
  2. Bennett EL
    Folia Primatol., 1986;47(1):26-38.
    PMID: 3557228
    Data are presented from a long-term study of banded langurs in three contrasting rain forest habitats in Peninsular Malaysia. Results from different sites and months are used to correlate ranging patterns with food availability and other environmental variables. Day range lengths are correlated with availability of preferred foods; the degree of territoriality is related to the distribution and size of food sources and length of time for which any one of these produces favoured food items.
    Matched MeSH terms: Tropical Climate
  3. Potts MD, Davies SJ, Bossert WH, Tan S, Nur Supardi MN
    Oecologia, 2004 May;139(3):446-53.
    PMID: 14997378
    Dispersal-assembly theories of species coexistence posit that environmental factors play no role in explaining community diversity and structure. Dispersal-assembly theories shed light on some aspects of community structure such as species-area and species-abundance relationships. However, species' environmental associations also affect these measures of community structure. Measurements of species' niche breadth and overlap address this influence. Using a new continuous measure of niche and a dispersal-assembly null model that maintains species' niche breadth and aggregation, we tested two hypotheses assessing the effects of habitat heterogeneity on the ability of dispersal-assembly theories to explain community niche structure. We found that in both homogenous and heterogeneous environments dispersal-assembly theories cannot fully explain observed niche structure. The performance of the dispersal-assembly null models was particularly poor in heterogeneous environments. These results indicate that non-dispersal based mechanisms are in part responsible for observed community structure and measures of community structure which include species' environmental associations should be used to test theories of species diversity.
    Matched MeSH terms: Tropical Climate
  4. Snaddon JL, Turner EC, Fayle TM, Khen CV, Eggleton P, Foster WA
    Biol Lett, 2012 Jun 23;8(3):397-400.
    PMID: 22188674 DOI: 10.1098/rsbl.2011.1115
    The exceptionally high species richness of arthropods in tropical rainforests hinges on the complexity of the forest itself: that is, on features such as the high plant diversity, the layered nature of the canopy and the abundance and the diversity of epiphytes and litter. We here report on one important, but almost completely neglected, piece of this complex jigsaw-the intricate network of rhizomorph-forming fungi that ramify through the vegetation of the lower canopy and intercept falling leaf litter. We show that this litter-trapping network is abundant and intercepts substantial amounts of litter (257.3 kg ha(-1)): this exceeds the amount of material recorded in any other rainforest litter-trapping system. Experimental removal of this fungal network resulted in a dramatic reduction in both the abundance (decreased by 70.2 ± 4.1%) and morphospecies richness (decreased by 57.4 ± 5.1%) of arthropods. Since the lower canopy levels can contain the highest densities of arthropods, the proportion of the rainforest fauna dependent on the fungal networks is likely to be substantial. Fungal litter-trapping systems are therefore a crucial component of habitat complexity, providing a vital resource that contributes significantly to rainforest biodiversity.
    Matched MeSH terms: Tropical Climate
  5. Wills C, Condit R
    Proc Biol Sci, 1999 Jul 22;266(1427):1445-52.
    PMID: 10457617
    Quadrat-based analysis of two rainforest plots of area 50 ha, one in Panama (Barro Colorado Island, BCI) and the other in Malaysia (Pasoh), shows that in both plots recruitment is in general negatively correlated with both numbers and biomass of adult trees of the same species in the same quadrat. At BCI, this effect is not significantly influenced by treefall gaps. In both plots, recruitment of individual species is negatively correlated with the numbers of trees of all species in the quadrats, but not with overall biomass. These observations suggest, but do not prove, widespread frequency-dependent effects produced by pathogens and seed-predators that act most effectively in quadrats crowded with trees. Within-species correlations of mortality with numbers or biomass are not found in either plot, indicating that most frequency-dependent mortality takes place before the trees reach 1 cm in diameter. Stochastic effects caused by BCI's more rapid tree turnover may contribute to a larger variance in diversity from quadrat to quadrat at BCI, although they are not sufficient to explain why BCI has fewer than half as many tree species as Pasoh. Finally, in both plots quadrats with low diversity show a significant increase in diversity over time, and this increase is stronger at BCI. This process, like the frequency-dependence, will tend to maintain diversity over time. In general, these non-random forces that should lead to the maintenance of diversity are slightly stronger at BCI, even though the BCI plot is less diverse than the Pasoh plot.
    Matched MeSH terms: Tropical Climate
  6. Boyero L, Pearson RG, Hui C, Gessner MO, Pérez J, Alexandrou MA, et al.
    Proc Biol Sci, 2016 Apr 27;283(1829).
    PMID: 27122551 DOI: 10.1098/rspb.2015.2664
    Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons.
    Matched MeSH terms: Climate
  7. Magrach A, Senior RA, Rogers A, Nurdin D, Benedick S, Laurance WF, et al.
    Proc Biol Sci, 2016 Mar 16;283(1826):20153008.
    PMID: 26936241 DOI: 10.1098/rspb.2015.3008
    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the 'health' and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana-tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of 'extinction debt'.
    Matched MeSH terms: Tropical Climate
  8. Chowdhury MEH, Khandakar A, Ahmed S, Al-Khuzaei F, Hamdalla J, Haque F, et al.
    Sensors (Basel), 2020 Oct 02;20(19).
    PMID: 33023097 DOI: 10.3390/s20195637
    Growing plants in the gulf region can be challenging as it is mostly desert, and the climate is dry. A few species of plants have the capability to grow in such a climate. However, those plants are not suitable as a food source. The aim of this work is to design and construct an indoor automatic vertical hydroponic system that does not depend on the outside climate. The designed system is capable to grow common type of crops that can be used as a food source inside homes without the need of large space. The design of the system was made after studying different types of vertical hydroponic systems in terms of price, power consumption and suitability to be built as an indoor automated system. A microcontroller was working as a brain of the system, which communicates with different types of sensors to control all the system parameters and to minimize the human intervention. An open internet of things (IoT) platform was used to store and display the system parameters and graphical interface for remote access. The designed system is capable of maintaining healthy growing parameters for the plants with minimal input from the user. The functionality of the overall system was confirmed by evaluating the response from individual system components and monitoring them in the IoT platform. The system was consuming 120.59 and 230.59 kWh respectively without and with air conditioning control during peak summer, which is equivalent to the system running cost of 13.26 and 25.36 Qatari Riyal (QAR) respectively. This system was circulating around 104 k gallons of nutrient solution monthly however, only 8-10 L water was consumed by the system. This system offers real-time notifications to alert the hydroponic system user when the conditions are not favorable. So, the user can monitor several parameters without using laboratory instruments, which will allow to control the entire system remotely. Moreover, the system also provides a wide range of information, which could be essential for plant researchers and provides a greater understanding of how the key parameters of hydroponic system correlate with plant growth. The proposed platform can be used both for quantitatively optimizing the setup of the indoor farming and for automating some of the most labor-intensive maintenance activities. Moreover, such a monitoring system can also potentially be used for high-level decision making, once enough data will be collected. This work presents significant opportunities for the people who live in the gulf region to produce food as per their requirements.
    Matched MeSH terms: Climate
  9. Palermo V, Hernandez Y
    Ecol Econ, 2020 Nov;177:106791.
    PMID: 33144752 DOI: 10.1016/j.ecolecon.2020.106791
    The frequency and intensity of extreme climate events are increasing all around the world, due to climate change. Climate adaptation strategies are therefore needed, since mitigation strategies alone are not sufficient to avoid serious impacts of climate change. However, adaptation to climate change is not straightforward, as it is highly influenced by diverse and conflicting interests as well as epistemological (or scientific) uncertainties. Therefore, a minimum requirement for its success is the active participation of stakeholders and citizens in the adaptation policy cycle. This paper presents a case study on a participatory process involving civil servants from different municipalities in Malaysia, in Southeast Asia, with a view to considering the optimal level of engagement that is required for climate adaptation planning. The exercise consisted of a Focus Group session, where participants were asked to discuss the level of stakeholder and citizen participation that should be adopted within the Global Covenant of Mayors for Climate and Energy initiative. Contrary to authors' expectations, the participants tended to suggest medium to high levels of participation in the planning process. During the dialogues, a walking activity through the city, aimed at identifying hotspots of climate risks and defined as "safety walks", was one of the ideas proposed as a high-potential participatory method, spreading in the adaptation framework. Safety walks could complement climate modelling and enhance the robustness of climate risk assessments.
    Matched MeSH terms: Climate Change
  10. Waldron S, Vihermaa L, Evers S, Garnett MH, Newton J, Henderson ACG
    Sci Rep, 2019 08 07;9(1):11429.
    PMID: 31391485 DOI: 10.1038/s41598-019-46534-9
    Southeast-Asian peat swamp forests have been significantly logged and converted to plantation. Recently, to mitigate land degradation and C losses, some areas have been left to regenerate. Understanding how such complex land use change affects greenhouse gas emissions is essential for modelling climate feedbacks and supporting land management decisions. We carried out field research in a Malaysian swamp forest and an oil palm plantation to understand how clear-felling, drainage, and illegal and authorized conversion to oil palm impacted the C cycle, and how the C cycle may change if such logging and conversion stopped. We found that both the swamp forest and the plantation emit centuries-old CO2 from their drainage systems in the managed areas, releasing sequestered C to the atmosphere. Oil palm plantations are an iconic symbol of tropical peatland degradation, but CO2 efflux from the recently-burnt, cleared swamp forest was as old as from the oil palm plantation. However, in the swamp forest site, where logging had ceased approximately 30 years ago, the age of the CO2 efflux was modern, indicating recovery of the system can occur. 14C dating of the C pool acted as a tracer of recovery as well as degradation and offers a new tool to assess efficacy of restoration management. Methane was present in many sites, and in higher concentrations in slow-flowing anoxic systems as degassing mechanisms are not strong. Methane loading in freshwaters is rarely considered, but this may be an important C pool in restored drainage channels and should be considered in C budgets and losses.
    Matched MeSH terms: Climate
  11. Elmqvist T, Siri J, Andersson E, Anderson P, Bai X, Das PK, et al.
    Sustain Sci, 2018;13(6):1549-1564.
    PMID: 30546487 DOI: 10.1007/s11625-018-0611-0
    Cities are currently experiencing serious, multifaceted impacts from global environmental change, especially climate change, and the degree to which they will need to cope with and adapt to such challenges will continue to increase. A complex systems approach inspired by evolutionary theory can inform strategies for policies and interventions to deal with growing urban vulnerabilities. Such an approach would guide the design of new (and redesign of existing) urban structures, while promoting innovative integration of grey, green and blue infrastructure in service of environmental and health objectives. Moreover, it would contribute to more flexible, effective policies for urban management and the use of urban space. Four decades ago, in a seminal paper in Science, the French evolutionary biologist and philosopher Francois Jacob noted that evolution differs significantly in its characteristic modes of action from processes that are designed and engineered de novo (Jacob in Science 196(4295):1161-1166, 1977). He labeled the evolutionary process "tinkering", recognizing its foundation in the modification and molding of existing traits and forms, with occasional dramatic shifts in function in the context of changing conditions. This contrasts greatly with conventional engineering and design approaches that apply tailor-made materials and tools to achieve well-defined functions that are specified a priori. We here propose that urban tinkering is the application of evolutionary thinking to urban design, engineering, ecological restoration, management and governance. We define urban tinkering as:A mode of operation, encompassing policy, planning and management processes, that seeks to transform the use of existing and design of new urban systems in ways that diversify their functions, anticipate new uses and enhance adaptability, to better meet the social, economic and ecological needs of cities under conditions of deep uncertainty about the future.This approach has the potential to substantially complement and augment conventional urban development, replacing predictability, linearity and monofunctional design with anticipation of uncertainty and non-linearity and design for multiple, potentially shifting functions. Urban tinkering can function by promoting a diversity of small-scale urban experiments that, in aggregate, lead to large-scale often playful innovative solutions to the problems of sustainable development. Moreover, the tinkering approach is naturally suited to exploring multi-functional uses and approaches (e.g., bricolage) for new and existing urban structures and policies through collaborative engagement and analysis. It is thus well worth exploring as a means of delivering co-benefits for environment and human health and wellbeing. Indeed, urban tinkering has close ties to systems approaches, which often are recognized as critical to sustainable development. We believe this concept can help forge much-closer, much-needed ties among engineers, architects, evolutionary ecologists, health specialists, and numerous other urban stakeholders in developing innovative, widely beneficial solutions for society and contribute to successful implementation of SDG11 and the New Urban Agenda.
    Matched MeSH terms: Climate Change
  12. Darling ES, McClanahan TR, Maina J, Gurney GG, Graham NAJ, Januchowski-Hartley F, et al.
    Nat Ecol Evol, 2019 Sep;3(9):1341-1350.
    PMID: 31406279 DOI: 10.1038/s41559-019-0953-8
    Without drastic efforts to reduce carbon emissions and mitigate globalized stressors, tropical coral reefs are in jeopardy. Strategic conservation and management requires identification of the environmental and socioeconomic factors driving the persistence of scleractinian coral assemblages-the foundation species of coral reef ecosystems. Here, we compiled coral abundance data from 2,584 Indo-Pacific reefs to evaluate the influence of 21 climate, social and environmental drivers on the ecology of reef coral assemblages. Higher abundances of framework-building corals were typically associated with: weaker thermal disturbances and longer intervals for potential recovery; slower human population growth; reduced access by human settlements and markets; and less nearby agriculture. We therefore propose a framework of three management strategies (protect, recover or transform) by considering: (1) if reefs were above or below a proposed threshold of >10% cover of the coral taxa important for structural complexity and carbonate production; and (2) reef exposure to severe thermal stress during the 2014-2017 global coral bleaching event. Our findings can guide urgent management efforts for coral reefs, by identifying key threats across multiple scales and strategic policy priorities that might sustain a network of functioning reefs in the Indo-Pacific to avoid ecosystem collapse.
    Matched MeSH terms: Climate
  13. Curnick DJ, Pettorelli N, Amir AA, Balke T, Barbier EB, Crooks S, et al.
    Science, 2019 01 18;363(6424):239.
    PMID: 30655434 DOI: 10.1126/science.aaw0809
    Matched MeSH terms: Climate Change
  14. Rashidi NA, Yusup S
    J Hazard Mater, 2021 02 05;403:123876.
    PMID: 33264948 DOI: 10.1016/j.jhazmat.2020.123876
    In this study, a binary mixture of petroleum coke and palm kernel shell had been investigated as potential starting materials for activated carbon production. Single-stage potassium carbonate (K2CO3) activation under nitrogen (N2) atmosphere was adopted in this research study. Effect of several operating parameters that included the impregnation ratio (1-3 wt./wt.), activation temperature (600-800 °C), and dwell time (1-2 hrs) were analyzed by using the Box-Behnken experimental design. Influence of these parameters towards activated carbon yield (Y1) and carbon dioxide (CO2) adsorption capacity at an atmospheric condition (Y2) were investigated. The optimum conditions for the activated carbon production were attained at impregnation ratio of 1.75:1, activation temperature of 680 °C, and dwell time of 1 h, with its corresponding Y1 and Y2 is 56.2 wt.% and 2.3991 mmol/g, respectively. Physicochemical properties of the pristine materials and synthesized activated carbon at the optimum conditions were analyzed in terms of their decomposition behavior, surface morphology, elemental composition, and textural characteristics. The study revealed that the blend of petroleum coke and palm kernel shell can be effectively used as the activated carbon precursors, and the experimental findings demonstrated comparable CO2 adsorption performance with commercial activated carbon as well as that in literatures.
    Matched MeSH terms: Climate
  15. Mohamad Syamim Hilm, Sofianita Mutalib, Sarifah Radiah Shari, Siti Nur Kamaliah Kamarudin
    ESTEEM Academic Journal, 2020;16(2):31-40.
    MyJurnal
    Electricity is one of the most important resources and fundamental infrastructure for every nation. Its milestone shows a significant contribution to world development that brought forth new technological breakthroughs throughout the centuries. Electricity demand constantly fluctuates, which affects the supply. Suppliers need to generate more electrical energy when demand is high, and less when demand is low. It is a common practice in power markets to have a reserve margin for unexpected fluctuation of demand. This research paper investigates regression techniques: multiple linear regression (MLR) and vector autoregression (VAR) to forecast demand with predictors of economic growth, population growth, and climate change as well as the demand itself. Auto-Regressive Integrated Moving Average (Auto-ARIMA) was used in benchmarking the forecasting. The results from MLR and VAR (lag-values=20) and Auto-ARIMA are monitored for five months from June to October of 2019. Using the root mean square error (RMSE) as an indicator for accuracy, Auto-ARIMA has the lowest RMSE for four months except in June 2019. VAR (lag-values=20) shows good forecasting capabilities for all five months, considering it uses the same lag values (20) for each month. Three different techniques have been successfully examined in order to find the best model for the prediction of the demand.
    Matched MeSH terms: Climate Change
  16. Hassnah Wee, Nur Nadirah Abdul Wahab, Zamhariyah Ahmad Fudil
    Jurnal Inovasi Malaysia, 2020;4(1):151-171.
    MyJurnal
    Tourists visiting destination in warm climate countries such as Malaysia might easily be affected with dehydration problem. Places like the Zoo requires tourist to walk intensively inside the Zoo area may cause dehydration if they do not consume enough plain water. This ZIBMAP innovative product intends to benefit the tourist wellness who visits the National Zoo, comes with an informative map and attractive infographic habitat, which can be kept as a souvenir. This innovative product is designed based on environmental-friendly features that support the implementation of environmental sustainability. A feasibility survey on dehydration risk awareness and the potential of the product acceptance for commercialization was carried out using a quantitative method. A convenience sampling technique was used to identify 300 tourists visiting the National Zoo as respondents for this survey. Descriptive analysis results indicated that majority of respondents aware of the dehydration risk and supported the used of the ZIBMAP innovative product. The outcome of the study highlighted the potential of this product to be commercialized and contribute to tourists’ wellness.
    Matched MeSH terms: Climate
  17. Nunes MH, Jucker T, Riutta T, Svátek M, Kvasnica J, Rejžek M, et al.
    Nat Commun, 2021 03 09;12(1):1526.
    PMID: 33750781 DOI: 10.1038/s41467-020-20811-y
    The past 40 years in Southeast Asia have seen about 50% of lowland rainforests converted to oil palm and other plantations, and much of the remaining forest heavily logged. Little is known about how fragmentation influences recovery and whether climate change will hamper restoration. Here, we use repeat airborne LiDAR surveys spanning the hot and dry 2015-16 El Niño Southern Oscillation event to measure canopy height growth across 3,300 ha of regenerating tropical forests spanning a logging intensity gradient in Malaysian Borneo. We show that the drought led to increased leaf shedding and branch fall. Short forest, regenerating after heavy logging, continued to grow despite higher evaporative demand, except when it was located close to oil palm plantations. Edge effects from the plantations extended over 300 metres into the forests. Forest growth on hilltops and slopes was particularly impacted by the combination of fragmentation and drought, but even riparian forests located within 40 m of oil palm plantations lost canopy height during the drought. Our results suggest that small patches of logged forest within plantation landscapes will be slow to recover, particularly as ENSO events are becoming more frequent.
    Matched MeSH terms: Climate Change
  18. Messina S, Edwards DP, AbdElgawad H, Beemster GTS, Tomassi S, Benedick S, et al.
    J Anim Ecol, 2020 10;89(10):2222-2234.
    PMID: 32535926 DOI: 10.1111/1365-2656.13280
    Selective logging is the dominant form of human disturbance in tropical forests, driving changes in the abundance of vertebrate and invertebrate populations relative to undisturbed old-growth forests. A key unresolved question is understanding which physiological mechanisms underlie different responses of species and functional groups to selective logging. Regulation of oxidative status is thought to be one major physiological mechanism underlying the capability of species to cope with environmental changes. Using a correlational cross-sectional approach, we compared a number of oxidative status markers among 15 understorey bird species in unlogged and selectively logged forest in Borneo in relation to their feeding guild. We then tested how variation of markers between forest types was associated with that in population abundance. Birds living in logged forests had a higher activity of the antioxidant enzyme superoxide dismutase and a different regulation of the glutathione cycle compared to conspecific birds in unlogged forest. However, neither oxidative damage nor oxidized glutathione differed between forest types. We also found that omnivores and insectivores differed significantly in all markers related to the key cellular antioxidant glutathione irrespective of the forest type. Species with higher levels of certain antioxidant markers in a given type of forest were less abundant in that forest type compared to the other. Our results suggest that there was little long-term effect of logging (last logging rotation occurred ~15 years prior to the study) on the oxidative status of understorey bird species. However, it is unclear if this was owing to plasticity or evolutionary change. Our correlative results also point to a potential negative association between some antioxidants and population abundance irrespective of the forest type.
    Matched MeSH terms: Tropical Climate
  19. Noor Artika Hassan, Hashim JH, Wan Puteh SE, Wan Mahiyuddin WR, Faisal MS
    MyJurnal
    Introduction: Altered weather patterns and changes in precipitation, temperature and humidity resulting
    from climate change could affect the distribution and incidence of cholera. This study is to quantify climateinduced increase in morbidity rates of cholera. Material and Methods: Monthly cholera cases and monthly
    temperature, precipitation, and relative humidity data from 2004 to 2014 were obtained from the Malaysian
    Ministry of Health and Malaysian Meteorological Department, respectively. Poisson generalized linear models
    were developed to quantify the relationship between meteorological parameters and the number of reported
    cholera cases. Results: The findings revealed that the total number of cholera cases in Malaysia during the 11
    year study period was 3841 cases with 32 deaths. Out of these, 45.1% of the cases were among children below
    12 years old and 75% of the cases were from Sabah. Temperature and precipitation gave significant impact on
    the cholera cases in Sabah, (p
    Matched MeSH terms: Climate Change
  20. Arellano G, Medina NG, Tan S, Mohamad M, Davies SJ
    New Phytol, 2019 01;221(1):169-179.
    PMID: 30067290 DOI: 10.1111/nph.15381
    What causes individual tree death in tropical forests remains a major gap in our understanding of the biology of tropical trees and leads to significant uncertainty in predicting global carbon cycle dynamics. We measured individual characteristics (diameter at breast height, wood density, growth rate, crown illumination and crown form) and environmental conditions (soil fertility and habitat suitability) for 26 425 trees ≥ 10 cm diameter at breast height belonging to 416 species in a 52-ha plot in Lambir Hills National Park, Malaysia. We used structural equation models to investigate the relationships among the different factors and tree mortality. Crown form (a proxy for mechanical damage and other stresses) and prior growth were the two most important factors related to mortality. The effect of all variables on mortality (except habitat suitability) was substantially greater than expected by chance. Tree death is the result of interactions between factors, including direct and indirect effects. Crown form/damage and prior growth mediated most of the effect of tree size, wood density, fertility and habitat suitability on mortality. Large-scale assessment of crown form or status may result in improved prediction of individual tree death at the landscape scale.
    Matched MeSH terms: Tropical Climate
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links