Microbial fermentation of organic matter under anaerobic conditions is currently the prominent pathway for biohydrogen production. Organic matter present in waste residues is regarded as an economic feedstock for biohydrogen production by dark and photo fermentative bacteria. Agricultural residues, fruit wastes, vegetable wastes, industrial wastewaters, and other livestock residues are some of the organic wastes most commonly used for biohydrogen production due to their higher organic content and biodegradability. Appropriate pretreatments are required to enhance the performance of biohydrogen from complex organic wastes. Biohydrogen production could also be enhanced by optimizing operation conditions and the addition of essential nutrients and nanoparticles. This review describes the pathways of biohydrogen production, discusses the effect of organic waste sources used and microbes involved on biohydrogen production, along with addressing the key parameters, advantages, and difficulties in each biohydrogen production pathway.
Recent studies show that fast hydropyrolysis (i.e., pyrolysis under hydrogen atmosphere operating at a rapid heating rate) is a promising technology for the conversion of biomass into liquid fuels (e.g., bio-oil and C4+ hydrocarbons). This pyrolysis approach is reported to be more effective than conventional fast pyrolysis in producing aromatic hydrocarbons and also lowering the oxygen content of the bio-oil obtained compared to hydrodeoxygenation (a common bio-oil upgrading method). Based on current literature, various non-catalytic and catalytic fast hydropyrolysis processes are reviewed and discussed. Efforts to combine fast hydropyrolysis and hydrotreatment process are also highlighted. Points to be considered for future research into fast hydropyrolysis and pending challenges are also discussed.
Microalgae are the most prospective raw materials for the production of biofuels, pyrolysis is an effective method to convert biomass into bioenergy. However, biofuels derived from the pyrolysis of microalgae exhibit poor fuel properties due to high content of moisture and protein. Co-pyrolysis is a simple and efficient method to produce high-quality bio-oil from two or more materials. Tires, plastics, and bamboo waste are the optimal co-feedstocks based on the improvement of yield and quality of bio-oil. Moreover, adding catalysts, especially CaO and Cu/HZSM-5, can enhance the quality of bio-oil by increasing aromatics content and decreasing oxygenated and nitrogenous compounds. Consequently, this paper provides a critical review of the production of bio-oil from co-pyrolysis of microalgae with other biomass wastes. Meanwhile, the underlying mechanism of synergistic effects and the catalytic effect on co-pyrolysis are discussed. Finally, the economic viability and prospects of microalgae co-pyrolysis are summarized.
The palm oil mill effluent (POME) from palm milling oil activities is discharged into various water bodies which poses several environmental problems including turbidity, increases COD and BOD, adds oil and grease, increases total nitrogen, and other pollutants. Therefore, it requires effective treatment to remove the pollutants before disposal. The objective was to critically discuss the performance of POME pretreatments along with their limitations. To offer a coverage on the present less efficient technologies, the opportunities and challenges of advanced pretreatments that combine magnetic materials and natural composites as adsorbents are comprehensively reviewed here. Moreover, potential of various magnetic materials for POME pretreatment has been described. Several existing pretreatment methods such as physical pretreatments, chemical pretreatments, coagulation-flocculation, and adsorption can remove pollutant content from POME with certain limitations and the use of magnetic composite adsorbents can enhance the treatment efficiency.
The complex structure of lignocellulosic biomass forms the recalcitrance to prevent the embedded holo-cellulosic sugars from undergoing the biodegradation. Therefore, a pretreatment is often required for an efficient enzymatic lignocellulosic hydrolysis. Recently, glycerol organosolv (GO) pretreatment is revealed potent in selective deconstruction of various lignocellulosic biomass and effective improvement of enzymatic hydrolysis. Evidently, the GO pretreatment is capable to modify the structure of dissolved components by glycerolysis, i.e., by trans-glycosylation onto glyceryl glycosides and by hydroxylation grafting onto glyceryl lignin. Such modifications tend to protect these main components against excessive degradation, which can be mainly responsible for the obviously less fermentation inhibitors arising in the GO pretreatment. This pretreatment can provide opportunities for valorization of emerging lignocellulosic biorefinery with production of value-added biochemicals. Recent advances in GO pretreatment of lignocellulosic biomass followed by enzymatic hydrolysis are reviewed, and perspectives are made for addressing remaining challenges.
Biofuels have become an attractive energy source because of the growing energy demand and environmental issues faced by fossil fuel consumption. Algal biomass, particularly microalgae, has excellent potential as feedstock to be converted to bio-oil, biochar, and combustible syngas via thermochemical conversion processes. Third-generation biofuels from microalgal feedstock are the promising option, followed by the first-generation and second-generation biofuels. This paper provides a review of the applications of thermochemical conversion techniques for biofuel production from algal biomass, comprising pyrolysis, gasification, liquefaction, and combustion processes. The progress in the thermochemical conversion of algal biomass is summarized, emphasizing the application of pyrolysis for its benefits over other processes. The review also encompasses the challenges and perspectives associated with the valorization of microalgae to biofuels ascertaining the potential opportunities and possibilities of extending the research into this area.
Hydrothermal carbonization (HTC) provides a promising alternative to valorize food waste digestate (FWD) and avoid disposal issues. Although hydrochar derived from FWD alone had a low calorific content (HHV of 13.9 MJ kg-1), catalytic co-HTC of FWD with wet lignocellulosic biomass (e.g., wet yard waste; YW) and 0.5 M HCl exhibited overall superior attributes in terms of energy recovery (22.7 MJ kg-1), stable and comprehensive combustion behaviour, potential nutrient recovery from process water (2-fold higher N retention and 129-fold higher P extraction), and a high C utilization efficiency (only 2.4% C loss). In contrast, co-HTC with citric acid provided ∼3-fold higher autogenous pressure, resulting in a superior energy content of 25.0 MJ kg-1, but the high C loss (∼74%) compromised the overall environmental benefits. The results of this study established a foundation to fully utilize FWD and YW hydrochar for bioenergy application and resource recovery from the process water.
Appropriate bioprocessing of lignocellulosic materials into ethanol could address the world's insatiable appetite for energy while mitigating greenhouse gases. Bioethanol is an ideal gasoline extender and is widely used in many countries in blended form with gasoline at specific ratios to improve fuel characteristics and engine performance. Although the bioethanol production industry has long been operational, finding a suitable microbial agent for the efficient conversion of lignocelluloses is still an active field of study. Among available microbial candidates, engineered bacteria may be promising ethanol producers while may show other desired traits such as thermophilic nature and high ethanol tolerance. This review provides the current knowledge on the introduction, overexpression, and deletion of the genes that have been performed in bacterial hosts to achieve higher ethanol yield, production rate and titer, and tolerance. The constraints and possible solutions and economic feasibility of the processes utilizing such engineered strains are also discussed.
Rapid growth of aquatic weeds in treatment pond poses undesirable challenge to shellfish aquaculture, requiring the farmers to dispose these weeds on a regular basis. This article reviews the potential and application of various aquatic weeds for generation of biofuels using recent thermochemical technologies (torrefaction, hydrothermal carbonization/liquefaction, pyrolysis, gasification). The influence of key operational parameters for optimising the aquatic weed conversion efficiency was discussed, including the advantages, drawbacks and techno-economic aspects of the thermochemical technologies, and their viability for large-scale application. Via extensive study in small and large scale operation, and the economic benefits derived, pyrolysis is identified as a promising thermochemical technology for aquatic weed conversion. The perspectives, challenges and future directions in thermochemical conversion of aquatic weeds to biofuels were also reviewed. This review provides useful information to promote circular economy by integrating shellfish aquaculture with thermochemical biorefinery of aquatic weeds rather than disposing them in landfills.
The litter of persistent organic pollutants (POPs) into the water streams and soil bodies via industrial effluents led to several adverse effects on the environment, health, and ecosystem. For the past decades, scientists have been paying efforts in the innovation and development of POPs removal from wastewater treatment. However, the conventional methods used for the removal of POPs from wastewater are costly and could lead to secondary pollution including soil and water bodies pollution. In recent, the utilization of green mechanisms such as biosorption, bioaccumulation and biodegradation has drawn attention and prelude the potential of green technology globally. Microalgae-bacteria consortia have emerged to be one of the latent wastewater treatment systems. The synergistic interactions between microalgae and bacteria could proficiently enhance the existing biological wastewater treatment system. This paper will critically review the comparison of conventional and recent advanced wastewater treatment systems and the mechanisms of the microalgae-bacteria symbiosis system.
The present study proposes a system for co-composting food waste and poultry manure amended with rice husk biochar at different doses (0, 3, 5, 10%, w/w), saw dust, and salts. The effect of rice husk biochar on the characteristics of final compost was evaluated through stabilization indices such as electrical conductivity, bulk density, total porosity, gaseous emissions and nitrogen conservation. Results indicated that when compared to control, the biochar amendment extended the thermophilic stage of the composting, accelerated the biodegradation and mineralization of substrate mixture and helped in the maturation of the end product. Carbon dioxide, methane and ammonia emissions were reduced and the nitrogen conservation was achieved at a greater level in the 10% (w/w) biochar amended treatments. This study implies that the biochar and salts addition for co-composting food waste and poultry manure is beneficial to enhance the property of the compost.
The simultaneous partial nitritation, anammox, denitrification, and COD oxidation (SNADCO) method was successfully carried out in an air-lift moving bed biofilm reactor (AL-MBBR) with cylinders carriers for the treatment of digested fish processing wastewater (FPW). Synthetic wastewater was used as substrate at stage 1. It changed into the digested FPW with dilution variation in order to increase the nitrogen and COD loading rates. With influent concentration of NH4+-N of 909 ± 101 mg-N/L and COD of 731 ± 26 mg/L, the nitrogen removal efficiency was 86.8% (nitrogen loading rate of 1.21 g-TN/L/d) and the COD removal efficiency was 50.5% (COD loading rate at 0.98 g-COD/L/d). This study showed that the process has the advantages in treating the real high ammonia concentration of digested wastewater containing organic compounds. The nitritation and anammox route was predominant in nitrogen removal, while COD oxidation and microbe proliferation played the main role in COD removal.
Lignocellulosic wastes have the ability to be transformed into oligosaccharides and other value-added products. The synthesis of oligosaccharides from renewable sources bestow to growing bioeconomies. Oligosaccharides are synthesized chemically or biologically from agricultural residues. These oligosaccharides are functional food supplements that have a positive impact on humans and livestock. Non-digestible oligosaccharides, refered as prebiotics are beneficial for the colonic microbiota inhabiting the f the digestive system. These microbiota plays a crucial role in stimulating the host immune system and other physiological responses. The commonly known prebiotics, galactooligosaccharides (GOS), xylooligosaccharides (XOS), fructooligosaccharides (FOS), mannanooligosaccharides (MOS), and isomaltooligosaccharides (IOS) are synthesized either through enzymatic or whole cell-mediated approaches using natural or agricultural waste substrates. This review focusses on recent advancements in biological processes, for the synthesis of oligosaccharides using renewable resources (lignocellulosic substrates) for sustainable circular bioeconomy. The work also addresses the limitations associated with the processes and commercialization of the products.
This research work aims to fabricate an optimized up-scaled photobioreactor and extraction tank which incorporates the Internet of Things (IoT) for remote monitoring of selected parameters without being present in the lab as the industry is gradually moving towards the direction of remote operation. Several design factors were considered where modelling using ANSYS was carried out before the finalised design is drawn using AutoCAD. To monitor critical parameters that include liquid level, temperature, and pH condition during the operation of the tanks, water-proof sensors are implemented with the aid of Arduino NodeMCU board and the sensors are linked with Blynk, a smartphone application that allows remote monitoring via Wi-Fi connection. The sensors' results obtained using the Blynk application show high accuracy as compared with manual data except for photobioreactor liquid level. This shows that IoT and remote monitoring can be integrated successfully.
This work aimed to develop an efficient microwave-hydrothermal (MH) extraction of malic acid from abundant natural cactus as hydrogen bond donor (HBD) whereby the concentration was optimized using response surface methodology. The ideal process conditions were found to be at a solvent-to-feed ratio of 0.008, 120°C and 20min with 1.0g of oxidant, H2O2. Next generation environment-friendly solvents, low transition temperature mixtures (LTTMs) were synthesized from cactus malic acid with choline chloride (ChCl) and monosodium glutamate (MSG) as hydrogen bond acceptors (HBAs). The hydrogen-bonding interactions between the starting materials were determined. The efficiency of the LTTMs in removing lignin from oil palm biomass residues, empty fruit bunch (EFB) was also evaluated. The removal of amorphous hemicellulose and lignin after the pretreatment process resulted in an enhanced digestibility and thermal degradability of biomass.
It was found that the operational temperature and the incorporation of microbial fuel cell (MFC) into anaerobic membrane bioreactor (AnMBR) have significant effect on AnMBRs' filtration performance. This paper addresses two issues (i) effect of temperature on AnMBR; and (ii) effect of MFC on AnMBRs' performance. The highest COD removal efficiency was observed in mesophilic condition (45°C). It was observed that the bioreactors operated at 45°C had the highest filtration resistance compared to others, albeit the excellent performance in removing the organic pollutant. Next, MFC was combined with AnMBR where the MFC acted as a pre-treatment unit prior to AnMBR and it was fed directly with palm oil mill effluent (POME). The supernatant from MFC was further treated by AnMBR. Noticeable improvement in filtration performance was observed in the combined system. Decrease in polysaccharide amount was observed in combined system which in turn suggested that the better filtration performance.
The pyrolysis of oil palm mesocarp fiber (OPMF) was catalyzed with a steel slag-derived zeolite (FAU-SL) in a slow-heating fixed-bed reactor at 450 °C, 550 °C, and 600 °C. The catalytic pyrolysis of OPMF produced a maximum yield of 47 wt% bio-oil at 550 °C, and the crude pyrolysis vapor (CPV) of this process yielded crude pyrolysis oil with broad distribution of bulky oxygenated organic compounds. The bio-oil composition produced at 550 °C contained mainly light and stable acid-rich carbonyls at a relative abundance of 48.02% peak area and phenolic compounds at 12.03% peak area. The FAU-SL high mesoporosity and strong surface acidity caused the conversion of the bulky CPV molecules into mostly light acid-rich carbonyls and aromatics through secondary reactions. The secondary reactions mechanisms facilitated by FAU-SL reduced the distribution of the organic compounds in the bio-oil to mostly acid-rich carbonyls and aromatic in contrast to other common zeolite.
The aim of this study was to determine the effect of different light sources and media (wastewater and BBM) on the growth of Pseudanabaena mucicola and its phycobiliprotein production. Results showed that P. mucicola grown in white light using wastewater as medium attributed higher biomass (0.55 g L-1) and when extracted with water, also showed significantly higher (P
Torrefaction of oil palm empty fruit bunches (EFB) under combustion gas atmosphere was conducted in a batch reactor at 473, 523 and 573K in order to investigate the effect of real combustion gas on torrefaction behavior. The solid mass yield of torrefaction in combustion gas was smaller than that of torrefaction in nitrogen. This may be attributed to the decomposition enhancement effect by oxygen and carbon dioxide in combustion gas. Under combustion gas atmosphere, the solid yield for torrefaction of EFB became smaller as the temperature increased. The representative products of combustion gas torrefaction were carbon dioxide and carbon monoxide (gas phase) and water, phenol and acetic acid (liquid phase). By comparing torrefaction in combustion gas with torrefaction in nitrogen gas, it was found that combustion gas can be utilized as torrefaction gas to save energy and inert gas.
This study aims to produce biochar and sugars from a macroalga Eucheuma denticulatum using dilute sulfuric acid hydrolysis along with microwave-assisted heating. The reactions were operated at sulfuric acid concentrations of 0.1 and 0.2M, reaction temperatures of 150-170°C and a heating time of 10min. Compared to the raw macroalga, biochar qualities were improved with increased carbon content and lower ash and moisture contents. The calorific value of the biochar could be intensified up to 45%, and 39% of energy yield was recovered. Apart from producing biochar, the highest total reducing sugars were 51.47g/L (74.84% yield) along with a low by-product 5-HMF of 0.20g/L, when the biomass was treated under the optimum conditions at 160°C with 0.1M H2SO4. Thus, this study demonstrated that macroalgae could be potentially used as biomass feedstock under microwave-assisted acid hydrolysis for the production of biofuel and value-added products.