MATERIALS AND METHODS: GLC-14, GLC-16 and GLC-19 SCLC cell lines derived from one patient, representing increasing progressive stages of disease were used. CSC marker expressions was determined by RT-qPCR and western blotting analyses, and heterogeneity was studied by CSC marker expression by immunofluorescence microscopy and flow cytometry. Colony formation assays were used to assess stem cell properties and therapy sensitivity.
RESULTS: Increasing expression of stem cell markers MYC, SOX2 and particularly CD44 were found in association with advancing disease. Single and overlapping expression of these markers indicated the presence of different CSC populations. The accumulation of more homogeneous double- and triple-positive CSC populations evolved with disease progression. Functional characterization of CSC properties affirmed higher proficiency of colony forming ability and increased resistance to γ-irradiation in GLC-16 and GLC-19 compared to GLC-14. GLC-19 colony formation was significantly inhibited by a human anti-CD44 antibody.
CONCLUSION: The progressive increase of MYC, SOX2 and particularly CD44 expression that was accompanied with enhanced colony forming capacity and resistance in the in vitro GLC disease progression model, supports the potential clinical relevance of CSC populations in malignancy and disease relapse of SCLC.
METHODS: The most important climatic factors that contribute to dengue outbreaks were identified in the current work. Correlation analyses were performed in order to determine these factors and these factors were used as input parameters for machine learning models. Top five machine learning classification models (Bayes network (BN) models, support vector machine (SVM), RBF tree, decision table and naive Bayes) were chosen based on past research. The models were then tested and evaluated on the basis of 4-year data (January 2010 to December 2013) collected in Malaysia.
RESULTS: This research has two major contributions. A new risk factor, called the TempeRain factor (TRF), was identified and used as an input parameter for the model of dengue outbreak prediction. Moreover, TRF was applied to demonstrate its strong impact on dengue outbreaks. Experimental results showed that the Bayes Network model with the new meteorological risk factor identified in this study increased accuracy to 92.35% for predicting dengue outbreaks.
CONCLUSIONS: This research explored the factors used in dengue outbreak prediction systems. The major contribution of this study is identifying new significant factors that contribute to dengue outbreak prediction. From the evaluation result, we obtained a significant improvement in the accuracy of a machine learning model for dengue outbreak prediction.
OBJECTIVES: The aim of this study was to determine the efficacy of an injectable HA hydrogel to maintain disc height and tissue hydration, promote structural repair, and attenuate inflammation and innervation in the lumbar discs.
SUMMARY OF BACKGROUND DATA: Previously, we have demonstrated that HA hydrogel alleviated inflammation, innervation, and pain to promote disc repair. Nevertheless, the effect of an injectable HA hydrogel in the lumbar disc in a weight-bearing animal model was not performed.
METHODS: We have adopted a surgically puncture-induced disc injury at lumbar levels in a rabbit model. The discs were grouped into sham, puncture with water injection, and puncture with HA hydrogel injection. Postoperatively, we measured changes in disc height using x-ray. We used magnetic resonance imaging to assess disc degeneration on tissue hydration after euthanasia. Post-mortem, we determined histological changes, innervation (PGP9.5) and inflammation (interleukin [IL]-6, IL-1β, and tumor necrosis factor [TNF]-α) in the discs.
RESULTS: We have demonstrated a significant reduction of disc height and T2/T1ρ mapping with histological evidence of degenerative discs, increase of innervation and inflammation in puncture-induced disc injury over time. In the HA hydrogel group, disc height was increased at weeks four and eight. A slight increase of T2 mapping, but significantly in T1ρ mapping, was observed in the HA hydrogel group at week 8. We observed homogenous NP distribution and organised AF lamellae at week eight and a slight reduced innervation score in the treatment group. HA hydrogel significantly downregulated IL-6 expression at day 1. This, however, was only slightly reduced for IL-1β and TNF-α.
CONCLUSION: An injectable HA hydrogel had the protective effects in suppressing the loss of disc height, promoting tissue hydration for structural repair, and attenuating inflammation and innervation to prevent further disc degeneration.Level of Evidence: N/A.