Displaying publications 41 - 60 of 175 in total

Abstract:
Sort:
  1. Torres ME, Cox T, Hong WL, McManus J, Sample JC, Destrigneville C, et al.
    Geobiology, 2015 Nov;13(6):562-80.
    PMID: 26081483 DOI: 10.1111/gbi.12146
    We present data from sediment cores collected from IODP Site C0012 in the Shikoku Basin. Our site lies at the Nankai Trough, just prior to subduction of the 19 Ma Philippine Sea plate. Our data indicate that the sedimentary package is undergoing multiple routes of electron transport and that these differing pathways for oxidant supply generate a complex array of metabolic routes and microbial communities involved in carbon cycling. Numerical simulations matched to pore water data document that Ca(2+) and Cl(1-) are largely supplied via diffusion from a high-salinity (44.5 psu) basement fluid, which supports the presence of halophile Archean communities within the deep sedimentary package that are not observed in shallow sediments. Sulfate supply from basement supports anaerobic oxidation of methane (AOM) at a rate of ~0.2 pmol cm(-3) day(-1) at ~400 mbsf. We also note the disappearance of δ-Proteobacteria at 434 mbsf, coincident with the maximum in methane concentration, and their reappearance at 463 mbsf, coinciding with the observed deeper increase in sulfate concentration toward the basement. We did not, however, find ANME representatives in any of the samples analyzed (from 340 to 463 mbsf). The lack of ANME may be due to an overshadowing effect from the more dominant archaeal phylotypes or may indicate involvement of unknown groups of archaea in AOM (i.e., unclassified Euryarchaeota). In addition to the supply of sulfate from a basement aquifer, the deep biosphere at this site is also influenced by an elevated supply of reactive iron (up to 143 μmol g(-1)) and manganese (up to 20 μmol g(-1)). The effect of these metal oxides on the sulfur cycle is inferred from an accompanying sulfur isotope fractionation much smaller than expected from traditional sulfate-reducing pathways. The detection of the manganese- and iron-reducer γ-Proteobacteria Alteromonas at 367 mbsf is consistent with these geochemical inferences.
  2. Brandon-Mong GJ, Gan HM, Sing KW, Lee PS, Lim PE, Wilson JJ
    Bull. Entomol. Res., 2015 Dec;105(6):717-27.
    PMID: 26344799 DOI: 10.1017/S0007485315000681
    Metabarcoding, the coupling of DNA-based species identification and high-throughput sequencing, offers enormous promise for arthropod biodiversity studies but factors such as cost, speed and ease-of-use of bioinformatic pipelines, crucial for making the leapt from demonstration studies to a real-world application, have not yet been adequately addressed. Here, four published and one newly designed primer sets were tested across a diverse set of 80 arthropod species, representing 11 orders, to establish optimal protocols for Illumina-based metabarcoding of tropical Malaise trap samples. Two primer sets which showed the highest amplification success with individual specimen polymerase chain reaction (PCR, 98%) were used for bulk PCR and Illumina MiSeq sequencing. The sequencing outputs were subjected to both manual and simple metagenomics quality control and filtering pipelines. We obtained acceptable detection rates after bulk PCR and high-throughput sequencing (80-90% of input species) but analyses were complicated by putative heteroplasmic sequences and contamination. The manual pipeline produced similar or better outputs to the simple metagenomics pipeline (1.4 compared with 0.5 expected:unexpected Operational Taxonomic Units). Our study suggests that metabarcoding is slowly becoming as cheap, fast and easy as conventional DNA barcoding, and that Malaise trap metabarcoding may soon fulfill its potential, providing a thermometer for biodiversity.
  3. Tran PN, Tan NE, Lee YP, Gan HM, Polter SJ, Dailey LK, et al.
    Genome Announc, 2015;3(6).
    PMID: 26586879 DOI: 10.1128/genomeA.01319-15
    Here, we report the whole-genome sequences and annotation of 11 endophytic bacteria from poison ivy (Toxicodendron radicans) vine tissue. Five bacteria belong to the genus Pseudomonas, and six single members from other genera were found present in interior vine tissue of poison ivy.
  4. Yaakop AS, Chan KG, Gan HM, Goh KM
    Genome Announc, 2015;3(5).
    PMID: 26494670 DOI: 10.1128/genomeA.01224-15
    Jeotgalibacillus alimentarius JY-13(T) (=KCCM 80002(T) = JCM 10872(T)) is a moderate halophile. In 2001, this was the first strain of the newly proposed Jeotgalibacillus genus. The draft genome of J. alimentarius was found to consist of 32 contigs (N50, 315,125 bp) with a total size of 3,364,745 bp. This genome information will be helpful for studies on pigmentation as well as applications for this bacterium.
  5. Goh KM, Chan KG, Yaakop AS, Chan CS, Ee R, Tan WS, et al.
    Genome Announc, 2015;3(3).
    PMID: 25999554 DOI: 10.1128/genomeA.00512-15
    Jeotgalibacillus soli, a bacterium capable of degrading N-acyl homoserine lactone, was isolated from a soil sample in Portugal. J. soli constitutes the only Jeotgalibacillus species isolated from a non-marine source. Here, the draft genome, several interesting glycosyl hydrolases, and its putative N-acyl homoserine lactonases are presented.
  6. Polter SJ, Caraballo AA, Lee YP, Eng WW, Gan HM, Wheatley MS, et al.
    Genome Announc, 2015;3(4).
    PMID: 26227604 DOI: 10.1128/genomeA.00847-15
    Here, we report the isolation, identification, whole-genome sequencing, and annotation of four Bacillus species from internal stem tissue of the insulin plant Costus igneus, grown in Puerto Rico. The plant is of medicinal importance, as extracts from its leaves have been shown to lower blood sugar levels of hyperglycemic rats.
  7. Mohd Shaufi MA, Sieo CC, Chong CW, Gan HM, Ho YW
    Gut Pathog, 2015;7:4.
    PMID: 25806087 DOI: 10.1186/s13099-015-0051-7
    Chicken gut microbiota has paramount roles in host performance, health and immunity. Understanding the topological difference in gut microbial community composition is crucial to provide knowledge on the functions of each members of microbiota to the physiological maintenance of the host. The gut microbiota profiling of the chicken was commonly performed previously using culture-dependent and early culture-independent methods which had limited coverage and accuracy. Advances in technology based on next-generation sequencing (NGS), offers unparalleled coverage and depth in determining microbial gut dynamics. Thus, the aim of this study was to investigate the ileal and caecal microbiota development as chicken aged, which is important for future effective gut modulation.
  8. Tan MH, Gan HM, Lee YP, Austin CM
    PMID: 25423512 DOI: 10.3109/19401736.2014.982587
    The mitochondrial genome sequence of the ghost crab, Ocypode ceratophthalmus, is documented (GenBank accession number: LN611669) in this article. This is the first mitogenome for the family Ocypodidae and the second for the order Ocypodoidea. Ocypode ceratophthalmus has a mitogenome of 15,564 base pairs consisting of 13 protein-coding genes, two ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The base composition of the O. ceratophthalmus mitogenome is 35.78% for T, 19.36% for C, 33.73% for A and 11.13% for G, with an AT bias of 69.51% and the gene order is the typical arrangement for brachyuran crabs.
  9. Tan MH, Gan HM, Lee YP, Austin CM
    PMID: 25423510 DOI: 10.3109/19401736.2014.982585
    The Mictyris longicarpus (soldier crab) complete mitochondrial genome sequence is reported making it the first for the family Mictyridae and the second for the superfamily Ocypodoidea. The mitogenome is 15,548 base pairs made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs and a non-coding AT-rich region. The soldier crab mitogenome gene order is characteristic of brachyuran crabs with a base composition of 36.58% for T, 19.15% for C, 32.43% for A and 11.83% for G, with an AT bias of 69.01%.
  10. Gan HM, Tan MH, Lee YP, Austin CM
    PMID: 25329292 DOI: 10.3109/19401736.2014.974174
    The mitogenome of the Australian freshwater blackfish, Gadopsis marmoratus was recovered coverage by genome skimming using the MiSeq sequencer (GenBank Accession Number: NC_024436). The blackfish mitogenome has 16,407 base pairs made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a 819 bp non-coding AT-rich region. This is the 5th mitogenome sequence to be reported for the family Percichthyidae.
  11. Gan HM, Tan MH, Lee YP, Austin CM
    PMID: 25329290 DOI: 10.3109/19401736.2014.974173
    The mitochondrial genome sequence of the Australian tadpole shrimp, Triops australiensis is presented (GenBank Accession Number: NC_024439) and compared with other Triops species. Triops australiensis has a mitochondrial genome of 15,125 base pairs consisting of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a non-coding AT-rich region. The T. australiensis mitogenome is composed of 36.4% A, 16.1% C, 12.3% G and 35.1% T. The mitogenome gene order conforms to the primitive arrangement for Branchiopod crustaceans, which is also conserved within the Pancrustacean.
  12. Thai BT, Tan MH, Lee YP, Gan HM, Tran TT, Austin CM
    Mol Biol Rep, 2016 May;43(5):391-6.
    PMID: 26922181 DOI: 10.1007/s11033-016-3966-2
    The marine clam Lutraria rhynchaena is gaining popularity as an aquaculture species in Asia. Lutraria populations are present in the wild throughout Vietnam and several stocks have been established and translocated for breeding and aquaculture grow-out purposes. In this study, we demonstrate the feasibility of utilising Illumina next-generation sequencing technology to streamline the identification and genotyping of microsatellite loci from this clam species. Based on an initial partial genome scan, 48 microsatellite markers with similar melting temperatures were identified and characterised. The 12 most suitable polymorphic loci were then genotyped using 51 individuals from a population in Quang Ninh Province, North Vietnam. Genetic variation was low (mean number of alleles per locus = 2.6; mean expected heterozygosity = 0.41). Two loci showed significant deviation from Hardy-Weinberg equilibrium (HWE) and the presence of null alleles, but there was no evidence of linkage disequilibrium among loci. Three additional populations were screened (n = 7-36) to test the geographic utility of the 12 loci, which revealed 100 % successful genotyping in two populations from central Vietnam (Nha Trang). However, a second population from north Vietnam (Co To) could not be successfully genotyped and morphological evidence and mitochondrial variation suggests that this population represents a cryptic species of Lutraria. Comparisons of the Qang Ninh and Nha Trang populations, excluding the 2 loci out of HWE, revealed statistically significant allelic variation at 4 loci. We reported the first microsatellite loci set for the marine clam Lutraria rhynchaena and demonstrated its potential in differentiating clam populations. Additionally, a cryptic species population of Lutraria rhynchaena was identified during initial loci development, underscoring the overlooked diversity of marine clam species in Vietnam and the need to genetically characterise population representatives prior to microsatellite development. The rapid identification and validation of microsatellite loci using next-generation sequencing technology warrant its integration into future microsatellite loci development for key aquaculture species in Vietnam and more generally, aquaculture countries in the South East Asia region.
  13. Lee PS, Gan HM, Clements GR, Wilson JJ
    Genome, 2016 May 11.
    PMID: 27696907
    Mammal diversity assessments based on DNA derived from invertebrates have been suggested as alternatives to assessments based on traditional methods; however, no study has field-tested both approaches simultaneously. In Peninsular Malaysia, we calibrated the performance of mammal DNA derived from blowflies (Diptera: Calliphoridae) against traditional methods used to detect species. We first compared five methods (cage trapping, mist netting, hair trapping, scat collection, and blowfly-derived DNA) in a forest reserve with no recent reports of megafauna. Blowfly-derived DNA and mist netting detected the joint highest number of species (n = 6). Only one species was detected by multiple methods. Compared to the other methods, blowfly-derived DNA detected both volant and non-volant species. In another forest reserve, rich in megafauna, we calibrated blowfly-derived DNA against camera traps. Blowfly-derived DNA detected more species (n = 11) than camera traps (n = 9), with only one species detected by both methods. The rarefaction curve indicated that blowfly-derived DNA would continue to detect more species with greater sampling effort. With further calibration, blowfly-derived DNA may join the list of traditional field methods. Areas for further investigation include blowfly feeding and dispersal biology, primer biases, and the assembly of a comprehensive and taxonomically-consistent DNA barcode reference library.
  14. Harrisson K, Pavlova A, Gan HM, Lee YP, Austin CM, Sunnucks P
    Heredity (Edinb), 2016 Jun;116(6):506-15.
    PMID: 26883183 DOI: 10.1038/hdy.2016.8
    Climatic differences across a taxon's range may be associated with specific bioenergetic demands and may result in genetics-based metabolic adaptation, particularly in aquatic ectothermic organisms that rely on heat exchange with the environment to regulate key physiological processes. Extending down the east coast of Australia, the Great Dividing Range (GDR) has a strong influence on climate and the evolutionary history of freshwater fish species. Despite the GDR acting as a strong contemporary barrier to fish movement, many species, and species with shared ancestries, are found on both sides of the GDR, indicative of historical dispersal events. We sequenced complete mitogenomes from the four extant species of the freshwater cod genus Maccullochella, two of which occur on the semi-arid, inland side of the GDR, and two on the mesic coastal side. We constructed a dated phylogeny and explored the relative influences of purifying and positive selection in the evolution of mitogenome divergence among species. Results supported mid- to late-Pleistocene divergence of Maccullochella across the GDR (220-710 thousand years ago), bringing forward previously reported dates. Against a background of pervasive purifying selection, we detected potentially functionally relevant fixed amino acid differences across the GDR. Although many amino acid differences between inland and coastal species may have become fixed under relaxed purifying selection in coastal environments rather than positive selection, there was evidence of episodic positive selection acting on specific codons in the Mary River coastal lineage, which has consistently experienced the warmest and least extreme climate in the genus.
  15. Krzeminska U, Wilson R, Rahman S, Song BK, Seneviratne S, Gan HM, et al.
    Mitochondrial DNA A DNA Mapp Seq Anal, 2016 Jul;27(4):2668-70.
    PMID: 26075478 DOI: 10.3109/19401736.2015.1043540
    The complete mitochondrial genomes of two jungle crows (Corvus macrorhynchos) were sequenced. DNA was extracted from tissue samples obtained from shed feathers collected in the field in Sri Lanka and sequenced using the Illumina MiSeq Personal Sequencer. Jungle crow mitogenomes have a structural organization typical of the genus Corvus and are 16,927 bp and 17,066 bp in length, both comprising 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal subunit genes, and a non-coding control region. In addition, we complement already available house crow (Corvus spelendens) mitogenome resources by sequencing an individual from Singapore. A phylogenetic tree constructed from Corvidae family mitogenome sequences available on GenBank is presented. We confirm the monophyly of the genus Corvus and propose to use complete mitogenome resources for further intra- and interspecies genetic studies.
  16. Dhanoa A, Hassan SS, Ngim CF, Lau CF, Chan TS, Adnan NA, et al.
    BMC Infect Dis, 2016 08 11;16(1):406.
    PMID: 27514512 DOI: 10.1186/s12879-016-1731-8
    BACKGROUND: The co-circulation of 4 DENV serotypes in geographically expanding area, has resulted in increasing occurrence of DENV co-infections. However, studies assessing the clinical impact of DENV co-infections have been scarce and have involved small number of patients. This study explores the impact of DENV co-infection on clinical manifestations and laboratory parameters.

    METHODS: This retrospective study involved consecutive hospitalized patients with non-structural protein 1 (NS1) antigen positivity during an outbreak (Jan to April 2014). Multiplex RT-PCR was performed directly on NS1 positive serum samples to detect and determine the DENV serotypes. All PCR-positive serum samples were inoculated onto C6/36 cells. Multiplex PCR was repeated on the supernatant of the first blind passage of the serum-infected cells. Random samples of supernatant from the first passage of C6/36 infected cells were subjected to whole genome sequencing. Clinical and laboratory variables were compared between patients with and without DENV co-infections.

    RESULTS: Of the 290 NS1 positive serum samples, 280 were PCR positive for DENV. Medical notes of 262 patients were available for analysis. All 4 DENV serotypes were identified. Of the 262 patients, forty patients (15.3 %) had DENV co-infections: DENV-1/DENV-2(85 %), DENV-1/DENV-3 (12.5 %) and DENV-2/DENV-3 (2.5 %). Another 222 patients (84.7 %) were infected with single DENV serotype (mono-infection), with DENV- 1 (76.6 %) and DENV- 2 (19.8 %) predominating. Secondary dengue infections occurred in 31.3 % patients. Whole genome sequences of random samples representing DENV-1 and DENV-2 showed heterogeneity amongst the DENVs. Multivariate analysis revealed that pleural effusion and the presence of warning signs were significantly higher in the co-infected group, both in the overall and subgroup analysis. Diarrhoea was negatively associated with co-infection. Additionally, DENV-2 co-infected patients had higher frequency of patients with severe thrombocytopenia (platelet count < 50,000/mm(3)), whereas DENV-2 mono-infections presented more commonly with myalgia. Elevated creatinine levels were more frequent amongst the co-infected patients in univariate analysis. Haemoconcentration and haemorrhagic manifestations were not higher amongst the co-infected patients. Serotypes associated with severe dengue were: DENV-1 (n = 9), DENV-2 (n = 1), DENV-3 (n = 1) in mono-infected patients and DENV-1/DENV-2 (n = 5) and DENV-1/DENV-3 (n = 1) amongst the co-infected patients.

    CONCLUSION: DENV co-infections are not uncommon in a hyperendemic region and co-infected patients are skewed towards more severe clinical manifestations compared to mono-infected patients.

  17. Grandjean F, Tan MH, Gan HY, Gan HM, Austin CM
    PMID: 25738217 DOI: 10.3109/19401736.2015.1018207
    The Austropotamobius pallipes complete mitogenome has been recovered using Next-Gen sequencing. Our sample of A. pallipes has a mitogenome of 15,679 base pairs (68.44% A + T content) made up of 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs, and a 877 bp non-coding AT-rich region. This is the first mitogenome sequenced for a crayfish from the family Astacidae and the 4(th) for northern hemisphere genera.
  18. Lee YP, Gan HM, Tan MH, Lys I, Page R, Dias Wanigasekera B, et al.
    PMID: 25707411 DOI: 10.3109/19401736.2015.1018209
    The mitogenome of Paranephrops planifrons, was obtained by next generation sequencing. This crayfish has a mitochondrial genome of 16,174 base pairs with 13 protein-coding genes, 2 ribosomal subunit genes, 22 transfer RNAs (tRNA), and a non-coding AT-rich region of 771 bp. The P. planifrons nucleotide composition is: 33.63% for T, 21.92% for C, 34.46% for A, and 9.98% for G and has a 68.09% AT bias. While the mitogenome gene order for this species is consistent with aspects of the highly distinctive parastacid crayfish mitogenome gene arrangement, it has a novel gene order involving the rearrangements of a protein coding and several tRNA genes.
  19. Gan HM, Gan HY, Tan MH, Penny SS, Willan RC, Austin CM
    PMID: 25648928 DOI: 10.3109/19401736.2015.1007355
    The complete mitochondrial genome of the commercially and ecologically important and internationally vulnerable giant clam Tridacna squamosa was recovered by genome skimming using the MiSeq platform. The T. squamosa mitogenome has 20,930 base pairs (62.35% A+T content) and is made up of 12 protein-coding genes, 2 ribosomal subunit genes, 24 transfer RNAs, and a 2594 bp non-coding AT-rich region. The mitogenome has a relatively large insertion in the atp6 gene. This is the first mitogenome to be sequenced from the genus Tridacna, and the family Tridacnidae and represents a new gene order.
  20. Gan HM, Tan MH, Gan HY, Lee YP, Austin CM
    PMID: 25648918 DOI: 10.3109/19401736.2015.1007325
    The clawed lobster Nephrops norvegicus is an important commercial species in European waters. We have sequenced the complete mitochondrial genome of the species from a partial genome scan using Next-Gen sequencing. The N. norvegicus has a mitogenome of 16,132 base pairs (71.22% A+ T content) comprising 13 protein-coding genes, 2 ribosomal subunit genes, 21 transfer RNAs, and a putative 1259 bp non-coding AT-rich region. This mitogenome is the second fully characterized for the family Nephropidae and the first for the genus Nephrops. The mitogenome gene order is identical to the Maine lobster, Homarus americanus with the exception of the possible loss of the trnI gene.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links