Displaying publications 41 - 46 of 46 in total

Abstract:
Sort:
  1. Nuin NA, Tan AF, Lew YL, Piera KA, William T, Rajahram GS, et al.
    Malar J, 2020 Aug 27;19(1):306.
    PMID: 32854695 DOI: 10.1186/s12936-020-03379-2
    BACKGROUND: The monkey parasite Plasmodium knowlesi is an emerging public health issue in Southeast Asia. In Sabah, Malaysia, P. knowlesi is now the dominant cause of human malaria. Molecular detection methods for P. knowlesi are essential for accurate diagnosis and in monitoring progress towards malaria elimination of other Plasmodium species. However, recent commercially available PCR malaria kits have unpublished P. knowlesi gene targets or have not been evaluated against clinical samples.

    METHODS: Two real-time PCR methods currently used in Sabah for confirmatory malaria diagnosis and surveillance reporting were evaluated: the QuantiFast™ Multiplex PCR kit (Qiagen, Germany) targeting the P. knowlesi 18S SSU rRNA; and the abTES™ Malaria 5 qPCR II kit (AITbiotech, Singapore), with an undisclosed P. knowlesi gene target. Diagnostic accuracy was evaluated using 52 P. knowlesi, 25 Plasmodium vivax, 21 Plasmodium falciparum, and 10 Plasmodium malariae clinical isolates, and 26 malaria negative controls, and compared against a validated reference nested PCR assay. The limit of detection (LOD) for each PCR method and Plasmodium species was also evaluated.

    RESULTS: The sensitivity of the QuantiFast™ and abTES™ assays for detecting P. knowlesi was comparable at 98.1% (95% CI 89.7-100) and 100% (95% CI 93.2-100), respectively. Specificity of the QuantiFast™ and abTES™ for P. knowlesi was high at 98.8% (95% CI 93.4-100) for both assays. The QuantiFast™ assay demonstrated falsely-positive mixed Plasmodium species at low parasitaemias in both the primary and LOD analysis. Diagnostic accuracy of both PCR kits for detecting P. vivax, P. falciparum, and P. malariae was comparable to P. knowlesi. The abTES™ assay demonstrated a lower LOD for P. knowlesi of ≤ 0.125 parasites/µL compared to QuantiFast™ with a LOD of 20 parasites/µL. Hospital microscopy demonstrated a sensitivity of 78.8% (95% CI 65.3-88.9) and specificity of 80.4% (95% CI 67.6-89.8) compared to reference PCR for detecting P. knowlesi.

    CONCLUSION: The QuantiFast™ and abTES™ commercial PCR kits performed well for the accurate detection of P. knowlesi infections. Although the QuantiFast™ kit is cheaper, the abTES™ kit demonstrated a lower LOD, supporting its use as a second-line referral-laboratory diagnostic tool in Sabah, Malaysia.

  2. Norahmad NA, Mohd Abd Razak MR, Abdullah NR, Sastu UR, Imwong M, Muniandy PK, et al.
    PLoS One, 2016;11(10):e0165515.
    PMID: 27788228 DOI: 10.1371/journal.pone.0165515
    Chloroquine (CQ) and fansidar (sulphadoxine-pyrimethamine, SP) were widely used for treatment of Plasmodium falciparum for several decades in Malaysia prior to the introduction of Artemisinin-based Combination Therapy (ACT) in 2008. Our previous study in Kalabakan, located in south-east coast of Sabah showed a high prevalence of resistance to CQ and SP, suggesting the use of the treatment may no longer be effective in the area. This study aimed to provide a baseline data of antimalarial drug resistant markers on P. falciparum isolates in Kota Marudu located in the north-east coast of Sabah. Mutations on genes associated with CQ (pfcrt and pfmdr1) and SP (pfdhps and pfdhfr) were assessed by PCR amplification and restriction fragment length polymorphism. Mutations on the kelch13 marker (K13) associated with artemisinin resistance were determined by DNA sequencing technique. The assessment of pfmdr1 copy number variation associated with mefloquine resistant was done by real-time PCR technique. A low prevalence (6.9%) was indicated for both pfcrt K76T and pfmdr1 N86Y mutations. All P. falciparum isolates harboured the pfdhps A437G mutation. Prevalence of pfdhfr gene mutations, S108N and I164L, were 100% and 10.3%, respectively. Combining the different resistant markers, only two isolates were conferred to have CQ and SP treatment failure markers as they contained mutant alleles of pfcrt and pfmdr1 together with quintuple pfdhps/pfdhfr mutation (combination of pfdhps A437G+A581G and pfdhfr C59R+S108N+I164L). All P. falciparum isolates carried single copy number of pfmdr1 and wild type K13 marker. This study has demonstrated a low prevalence of CQ and SP resistance alleles in the study area. Continuous monitoring of antimalarial drug efficacy is warranted and the findings provide information for policy makers in ensuring a proper malaria control.
  3. Liew JWK, Mahpot RB, Dzul S, Abdul Razak HAB, Ahmad Shah Azizi NAB, Kamarudin MB, et al.
    Am J Trop Med Hyg, 2018 06;98(6):1709-1713.
    PMID: 29877176 DOI: 10.4269/ajtmh.17-1010
    Although Plasmodium vivax infections in Malaysia are usually imported, a significant autochthonous outbreak of vivax malaria was detected in a remote indigenous (Orang Asli) settlement located in northern peninsular Malaysia. Between November 2016 and April 2017, 164 cases of P. vivax infection were detected. Although 83.5% of the vivax cases were identified through passive case detection and contact screening during the first 7 weeks, subsequent mass blood screening (combination of rapid diagnostic tests, blood films, and polymerase chain reaction [PCR]) of the entire settlement (N = 3,757) revealed another 27 P. vivax infections, 19 of which were asymptomatic. The mapped data from this active case detection program was used to direct control efforts resulting in the successful control of the outbreak in this region. This report highlights the importance of proactive case surveillance and timely management of malaria control in Malaysia as it nears malaria elimination.
  4. Labadin J, Hong BH, Tiong WK, Gill BS, Perera D, Rigit ARH, et al.
    Multimed Tools Appl, 2023;82(11):17415-17436.
    PMID: 36404933 DOI: 10.1007/s11042-022-14120-3
    Traditionally, dengue is controlled by fogging, and the prime location for the control measure is at the patient's residence. However, when Malaysia was hit by the first wave of the Coronavirus disease (COVID-19), and the government-imposed movement control order, dengue cases have decreased by more than 30% from the previous year. This implies that residential areas may not be the prime locations for dengue-infected mosquitoes. The existing early warning system was focused on temporal prediction wherein the lack of consideration for spatial component at the microlevel and human mobility were not considered. Thus, we developed MozzHub, which is a web-based application system based on the bipartite network-based dengue model that is focused on identifying the source of dengue infection at a small spatial level (400 m) by integrating human mobility and environmental predictors. The model was earlier developed and validated; therefore, this study presents the design and implementation of the MozzHub system and the results of a preliminary pilot test and user acceptance of MozzHub in six district health offices in Malaysia. It was found that the MozzHub system is well received by the sample of end-users as it was demonstrated as a useful (77.4%), easy-to-operate system (80.6%), and has achieved adequate client satisfaction for its use (74.2%).
  5. Md Iderus NH, Singh SSL, Ghazali SM, Zulkifli AA, Ghazali NAM, Lim MC, et al.
    Front Public Health, 2023;11:1213514.
    PMID: 37693699 DOI: 10.3389/fpubh.2023.1213514
    BACKGROUND: Globally, the COVID-19 pandemic has affected the transmission dynamics and distribution of dengue. Therefore, this study aims to describe the impact of the COVID-19 pandemic on the geographic and demographic distribution of dengue incidence in Malaysia.

    METHODS: This study analyzed dengue cases from January 2014 to December 2021 and COVID-19 confirmed cases from January 2020 to December 2021 which was divided into the pre (2014 to 2019) and during COVID-19 pandemic (2020 to 2021) phases. The average annual dengue case incidence for geographical and demographic subgroups were calculated and compared between the pre and during the COVID-19 pandemic phases. In addition, Spearman rank correlation was performed to determine the correlation between weekly dengue and COVID-19 cases during the COVID-19 pandemic phase.

    RESULTS: Dengue trends in Malaysia showed a 4-year cyclical trend with dengue case incidence peaking in 2015 and 2019 and subsequently decreasing in the following years. Reductions of 44.0% in average dengue cases during the COVID-19 pandemic compared to the pre-pandemic phase was observed at the national level. Higher dengue cases were reported among males, individuals aged 20-34 years, and Malaysians across both phases. Weekly dengue cases were significantly correlated (ρ = -0.901) with COVID-19 cases during the COVID-19 pandemic.

    CONCLUSION: There was a reduction in dengue incidence during the COVID-19 pandemic compared to the pre-pandemic phase. Significant reductions were observed across all demographic groups except for the older population (>75 years) across the two phases.

  6. Hoffmann AA, Ahmad NW, Keong WM, Ling CY, Ahmad NA, Golding N, et al.
    iScience, 2024 Feb 16;27(2):108942.
    PMID: 38327789 DOI: 10.1016/j.isci.2024.108942
    Partial replacement of resident Aedes aegypti mosquitoes with introduced mosquitoes carrying certain strains of inherited Wolbachia symbionts can result in transmission blocking of dengue and other viruses of public health importance. Wolbachia strain wAlbB is an effective transmission blocker and stable at high temperatures, making it particularly suitable for hot tropical climates. Following trial field releases in Malaysia, releases using wAlbB Ae. aegypti have become operationalized by the Malaysian health authorities. We report here on an average reduction in dengue fever of 62.4% (confidence intervals 50-71%) in 20 releases sites when compared to 76 control sites in high-rise residential areas. Importantly the level of dengue reduction increased with Wolbachia frequency, with 75.8% reduction (61-87%) estimated at 100% Wolbachia frequency. These findings indicate large impacts of wAlbB Wolbachia invasions on dengue fever incidence in an operational setting, with incidence expected to further decrease as wider areas are invaded.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links