Displaying publications 41 - 44 of 44 in total

Abstract:
Sort:
  1. Bhat R, Karim AA
    J Food Sci Technol, 2014 Jul;51(7):1326-33.
    PMID: 24966426 DOI: 10.1007/s13197-012-0652-9
    Developing novel fish gelatin films with better mechanical properties than mammalian gelatin is a challenging but promising endeavor. Studies were undertaken to produce fish gelatin films by combining treatments with different sugars (ribose and lactose) followed 'by' 'and' ultraviolet (UV) radiation, as possible cross-linking agents. Increase in tensile strength and percent elongation at break was recorded, which was more significant in films without sugars that were exposed to UV radiation. Films with added ribose showed decreased solubility after UV treatment and exhibited higher swelling percentage than films with added lactose, which readily dissolved in water. FTIR spectra of all the films showed identical patterns, which indicated no major changes to have occurred in the functional groups as a result of interaction between gelatin, sugars and UV irradiation. The results of this study could be explored for commercial use, depending on industrial needs for either production of edible films or for food packaging purposes.
  2. Bhat R, Karim AA
    Fitoterapia, 2010 Oct;81(7):669-79.
    PMID: 20434529 DOI: 10.1016/j.fitote.2010.04.006
    Eurycoma longifolia Jack is an herbal medicinal plant of South-East Asian origin, popularly recognized as 'Tongkat Ali.' The plant parts have been traditionally used for its antimalarial, aphrodisiac, anti-diabetic, antimicrobial and anti-pyretic activities, which have also been proved scientifically. The plant parts are rich in various bioactive compounds (like eurycomaoside, eurycolactone, eurycomalactone, eurycomanone, and pasakbumin-B) among which the alkaloids and quassinoids form a major portion. Even though toxicity and safety evaluation studies have been pursued, still a major gap exists in providing scientific base for commercial utilization and clearance of the Tongkat Ali products with regard to consumer's safety. The present review aims at reviewing the research works undertaken till date, on this plant in order to provide sufficient baseline information for future works and for commercial exploitation.
  3. Bhat R, Karim AA
    Int J Food Sci Nutr, 2009;60 Suppl 4:9-20.
    PMID: 19462319 DOI: 10.1080/09637480802241626
    Radiation processing has been employed successfully for value addition of food and agricultural products. Preliminary studies were undertaken to evaluate the changes induced by ionizing radiation (up to 30 kGy), in the form of gamma irradiation and electron beam irradiation, on some quality attributes and nutritive values of nutraceutically valued lotus seeds. Significant loss in seed firmness was recorded between control and irradiated seeds, irrespective of radiation source. Similarly, the specific viscosity of irradiated lotus seeds decreased significantly up to a dose of 7.5 kGy. Starch increased after exposure to gamma or electron beam irradiation, whereas the total phenolic contents were decreased. Gamma irradiation revealed an enhancement in protein, while the electron beam showed a decrease. Partial oxidation of the seeds during radiation treatments might have occurred as evidenced from the decomposition profiles (thermogravimetry) during heating. It is evident that ionizing radiation brought about significant and variable changes in the quality and nutritive values of lotus seed. Further exploration of this technology for safety and quality is warranted.
  4. Karim AA, Azlan A
    Molecules, 2012 Oct 10;17(10):11931-46.
    PMID: 23052712 DOI: 10.3390/molecules171011931
    Fruit pods contain various beneficial compounds that have biological activities and can be used as a source of pharmaceutical and nutraceutical products. Although pods or pericarps are usually discarded when consuming the edible parts of fruits, they contain some compounds that exhibit biological activities after extraction. Most fruit pods included in this review contain polyphenolic components that can promote antioxidant effects on human health. Additionally, anti-inflammatory, antibacterial, antifungal and chemopreventive effects are associated with these fruit pod extracts. Besides polyphenolics, other compounds such as xanthones, carotenoids and saponins also exhibit health effects and can be potential sources of nutraceutical and pharmaceutical components. In this review, information on fruit pods or pericarp of Garcinia mangostana, Ceratonia siliqua, Moringa oleifera, Acacia nilotica, Sapindus rarak and Prosopis cineraria is presented and discussed with regard to their biological activity of the major compounds existing in them. The fruit pods of other ethno- botanical plants have also been reviewed. It can be concluded that although fruit pods are considered as being of no practical use and are often being thrown away, they nevertheless contain compounds that might be useful sources of nutraceutical and other pharmaceutical components.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links