Displaying publications 41 - 44 of 44 in total

Abstract:
Sort:
  1. Loh ZH, Kwong HC, Lam KW, Teh SS, Ee GCL, Quah CK, et al.
    J Enzyme Inhib Med Chem, 2021 Dec;36(1):627-639.
    PMID: 33557647 DOI: 10.1080/14756366.2021.1882452
    A new series of 3-O-substituted xanthone derivatives were synthesised and evaluated for their anti-cholinergic activities against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The results indicated that the xanthone derivatives possessed good AChE inhibitory activity with eleven of them (5, 8, 11, 17, 19, 21-23, 26-28) exhibited significant effects with the IC50 values ranged 0.88 to 1.28 µM. The AChE enzyme kinetic study of 3-(4-phenylbutoxy)-9H-xanthen-9-one (23) and ethyl 2-((9-oxo-9H-xanthen-3-yl)oxy)acetate (28) showed a mixed inhibition mechanism. Molecular docking study showed that 23 binds to the active site of AChE and interacts via extensive π-π stacking with the indole and phenol side chains of Trp86 and Tyr337, besides the hydrogen bonding with the hydration site and π-π interaction with the phenol side chain of Y72. This study revealed that 3-O-alkoxyl substituted xanthone derivatives are potential lead structures, especially 23 and 28 which can be further developed into potent AChE inhibitors.
  2. Kwong HC, Chidan Kumar CS, Mah SH, Mah YL, Chia TS, Quah CK, et al.
    Sci Rep, 2019 Jan 30;9(1):926.
    PMID: 30700752 DOI: 10.1038/s41598-018-37486-7
    Imidazo[1,2-a]pyridine-based compounds are clinically important to the treatments of heart and circulatory failures, while many are under development for pharmaceutical uses. In this study, a series of imidazo[1,2-a]pyridine-based derivatives 2(a-o) were synthesized by reacting a-haloketones with 2-aminopyridines in a basic media at ambient temperature. Single crystal X-ray diffraction studies suggest that with low degree-of-freedom, the introduction of bulky adamantyl or electron-rich biphenyl moiety into the imidazopyridine derivatives will not affect its structural occupancy. Imidazo[1,2-a]pyridine-based derivatives with biphenyl side chain are potential AChE inhibitors. Compound 2h which bears a biphenyl side chain and methyl substituent at the position R4 of the imidazo[1,2-a]pyridine ring showed the strongest AChE inhibition with an IC50 value of 79 µM. However, imidazo[1,2-a]pyridine derivatives with phenyl side chain exhibit better BChE inhibition effect among the series. Compound 2j with 3,4-dichlorophenyl side chain and unsubstituted imidazo[1,2-a]pyridine ring appears to be the strongest BChE inhibitor with an IC50 value of 65 µM and good selectivity. The inhibitory effects of active compounds were further confirmed by computational molecular docking studies. The results unveiled that peripheral anionic sites of AChE and acyl pocket of BChE were the predominated binding sites for the subjected inhibitors.
  3. Teerapongpisan P, Monkantha T, Yimklan S, Mah SH, Gunter NV, Promnart P, et al.
    J Nat Prod, 2024 Jun 28;87(6):1611-1617.
    PMID: 38805684 DOI: 10.1021/acs.jnatprod.4c00248
    The first phytochemical investigation of the twig extract of Uvaria leptopoda resulted in the isolation and identification of three new tetrahydroxanthene-1,3(2H)-diones, uvarialeptones A-C, two new oxidized hexadiene derivatives, uvarialeptols A and B, together with ten known compounds. Their structures were elucidated by spectroscopic techniques and mass spectrometry. Uvarialeptones A and B were unprecedented tetrahydroxanthene-1,3(2H)-dione dimers which exhibited a cyclobutane ring via [2 + 2] cycloaddition from uvarialeptone C and 9a-O-methyloxymitrone, respectively. The structure of uvarialeptone A was confirmed by X-ray diffraction analysis using Mo Kα radiation. Compound 3 inhibited NO production at an IC50 value of 6.7 ± 0.1 μM.
  4. Champakam S, Patrick BO, Injan N, Nokbin S, Cheenpracha S, Loh ZH, et al.
    J Nat Prod, 2024 Nov 07.
    PMID: 39508737 DOI: 10.1021/acs.jnatprod.4c00933
    Phytochemical investigations of the twig and leaf extracts of Goniothalamus tortilipetalus resulted in the isolation and identification of two new alkaloids, goniotortiline (1) and goniotortilactam (2), three new styryl lactone derivatives, goniotortilactone (3) and goniotortilols A (4) and B (5), and 25 known compounds. Their structures were elucidated by spectroscopic methods and HRESITOFMS data. Compounds 5, 13, 15, 16, 22, and 30 inhibited nitric oxide (NO) production with IC50 values ranging from 8.7 ± 0.1 to 17 ± 1 μM, revealing stronger effects than the standard drug, dexamethasone (IC50 16.9 ± 2.2 μM), and compound 30 possessed the most potent NO production inhibition. Compounds 12 and 29 demonstrated notable efficacy in enhancing glucose consumption with IC50 values of 77 ± 4 and 66 ± 4 μM, respectively, while their glucose uptakes were 1.7- and 2-fold, respectively.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links