Displaying publications 41 - 47 of 47 in total

Abstract:
Sort:
  1. Nazni WA, Luke H, Wan Rozita WM, Abdullah AG, Sa'diyah I, Azahari AH, et al.
    Trop Biomed, 2005 Jun;22(1):53-61.
    PMID: 16880754
    In order to control any pest it is essential to study the life cycle, biology and bionomics of the target pest under control. With this respect, we have studied the flight range of the house fly Musca domestica (L.). The flight range of the house fly from two sites i.e, the poultry farm and a stable farm has been studied. The flight range study was conducted using a mark release technique. The approach we used in this study was that the flies collected from the respective farms were marked and released at different distances from the farms. The flies were then re-captured from the poultry farm and the stable farm. Studies conducted elsewhere use the technique of releasing the insect species at one spot and recapturing the insect species with the help of baited traps placed at various locations from the release point. The advantage of the approach used in this study was that the flight range as well as the homing effect was determined. From this study, the flight range of house flies released at the poultry farm was 7 km whereas flight range for flies release from stable farm was 5 km. The recovery rate of house flies at the poultry and stable farm was 0.05% and 0.016%, In this study, marked specimens has been detected up to 8 days in field conditions indicating that under field condition the life expectancy could be in the range of 1-2 weeks.
  2. Lee HL, Rohani A, Khadri MS, Nazni WA, Rozilawati HA, Nurulhusna AH, et al.
    MyJurnal
    Dengue is a serious mosquito borne disease common in tropical and sub-tropical countries including Malaysia. There is at present a lack of specific treatment and an effective tetravalent vaccine against dengue. The control of dengue depends solely on the suppression of the two most important vectors namely, Aedes aegypti and Ae albopictus. Despite intensive and extensive control efforts by health agencies, the disease continues to spread. This paper updates various innovations on control of dengue vectors. Gene-based sterile insect technique using the RIDL technology for both Aedes aegypti & Ae albopictus control has now been actively researched and field trials are pursued to evaluate the effectiveness of the technology. The release of Wolbachia-infected Ae aegypti is another dengue control innovation. The infected mosquito cannot support development of dengue virus and has shorter life span. Other innovations include: auto-dissemination of insect control agents using ovitrap, autocidal adult and larva trap, outdoor residual spraying, insecticidal paint and biocontrol agent. In other innovation, outbreak prediction capability is enhanced by developing model based on environmental data and analysis utilising neural network.
  3. Chen CD, Nazni WA, Lee HL, Hashim R, Abdullah NA, Ramli R, et al.
    Trop Biomed, 2014 Jun;31(2):381-6.
    PMID: 25134909 MyJurnal
    This study reported the ant species that were recovered from monkey carcasses in three different ecological habitats in Malaysia. The study was conducted from 9 May - 10 October 2007, 6 May - 6 August 2008 and 26 May - 14 July 2009 in forested area (Gombak, Selangor), coastal area (Tanjong Sepat, Selangor) and highland area (Bukit Cincin, Pahang), respectively. Monkey carcass was used as a model for human decomposition in this study. A total of 4 replicates were used in each of the study sites. Ants were observed to prey on eggs, larvae, pupae and newly emerged flies. This study found that ant species could be found at all stages of decomposition, indicating that ants were not a significant indicator for faunal succession. However, different species of ants were obtained from monkey carcasses placed in different ecological habitats. Cardiocondyla sp. was only found on carcasses placed in the coastal area; while Pheidole longipes, Hypoponera sp. and Pachycondyla sp. were solely found on carcasses placed in the highland area. On the other hand, Pheidologeton diversus and Paratrechina longicornis were found in several ecological habitats. These data suggests that specific ant species can act as geographic indicators for different ecological habitats in forensic entomology cases in Malaysia.
  4. Norzahira R, Hidayatulfathi O, Wong HM, Cheryl A, Firdaus R, Chew HS, et al.
    Trop Biomed, 2011 Apr;28(1):48-54.
    PMID: 21602768 MyJurnal
    Ovitrap surveillance was conducted in methodically selected areas in Bentong, Pahang, Malaysia from June 2008 till December 2009 in order to identify insular sites with stable Aedes aegypti population. Eleven sites were surveyed in Bentong district, Pahang, and one of these locations (N3º33' E101º54') was found to have an ovitrap index of Ae. aegypti and Aedes albopictus ranging from 8%-47% and 37%-78% respectively, indicating that this site could be a high-risk area for dengue outbreak. Ae. aegypti larvae were found in both indoor and outdoor ovitraps (p>0.05) while significant difference between the populations of Ae. albopictus larvae from indoors and outdoors was observed (p<0.01). Data collected in this study could provide important entomological information for designing an effective integrated vector control programme to combat Aedes mosquitoes in this area.
  5. Lim KW, Sit NW, Norzahira R, Sing KW, Wong HM, Chew HS, et al.
    Trop Biomed, 2010 Aug;27(2):185-92.
    PMID: 20962714 MyJurnal
    A year-long ovitrap surveillance was conducted between November 2007 and October 2008 in two insular settlements (Kampung Pulau Ketam and Kampung Sungai Lima) within the Malaysian island of Pulau Ketam. Eighty standard ovitraps were placed indoors and outdoors of randomly selected houses/locations. Results demonstrated an endemic baseline Aedes population throughout the year without weekly large fluctuations. Kampung Pulau Ketam has high Aedes aegypti and Aedes albopictus population, but only Ae. aegypti was found in Kampung Sungai Lima. Aedes aegypti showed no preference for ovitraps placed indoor versus outdoor. However, as expected, significantly more outdoor ovitraps were positive for Ae. albopictus (p<0.05). Trends in Ae. albopictus and Ae. aegypti populations mirrored each other suggesting that common factors influenced these two populations.
  6. Cheong YL, Rosilawati R, Mohd-Khairuddin CI, Siti-Futri FF, Nur-Ayuni N, Lim KH, et al.
    Trop Biomed, 2021 Jun 01;38(2):171-179.
    PMID: 34172707 DOI: 10.47665/tb.38.2.054
    Diseases such as malaria, dengue, Zika and chikungunya remain endemic in many countries. Setting and deploying traps to capture the host/vector species are fundamental to understand their density and distributions. Human effort to manage the trap data accurately and timely is an exhaustive endeavour when the study area expands and period prolongs. One stop mobile app to manage and monitor the process of targeted species trapping, from field to laboratory level is still scarce. Toward this end, we developed a new mobile app named "PesTrapp" to acquire the vector density index based on the mobile updates of ovitraps and species information in field and laboratory. This study aimed to highlight the mobile app's development and design, elucidate the practical user experiences of using the app and evaluate the preliminary user assessment of the mobile app. The mobile app was developed using mobile framework and database. User evaluation of the mobile app was based on the adjusted Mobile App Rating Scale and Standardized User Experience Percentile Rank Questionnaire. The process flows of system design and detailed screen layouts were described. The user experiences with and without the app in a project to study Aedes surveillance in six study sites in Selangor, Malaysia were elucidated. The overall mean user evaluation score of the mobile app was 4.0 out of 5 (SD=0.6), reflects its acceptability of the users. The PesTrapp, a one-stop solution, is anticipated to improve the entomological surveillance work processes. This new mobile app can contribute as a tool in the vector control countermeasure strategies.
  7. Rozilawati H, Faudzi AY, Rahidah AA, Azlina AH, Abdullah AG, Amal NM, et al.
    Indian J Med Res, 2011 Jun;133:670-3.
    PMID: 21727669
    Chikungunya infection has become a public health threat in Malaysia since the 2008 nationwide outbreaks. Aedes albopictus Skuse has been identified as the chikungunya vector in Johor State during the outbreaks. In 2009, several outbreaks had been reported in the State of Kelantan. Entomological studies were conducted in Kelantan in four districts, namely Jeli, Tumpat, Pasir Mas and Tanah Merah to identify the vector responsible for the virus transmission.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links