Displaying publications 41 - 60 of 69 in total

Abstract:
Sort:
  1. Wireko AA, Ohenewaa Tenkorang P, Tope Adebusoye F, Mehta A, Cheng Ng J, Yaa Asieduwaa O, et al.
    Int J Surg, 2023 Feb 01;109(2):91-93.
    PMID: 36799813 DOI: 10.1097/JS9.0000000000000216
  2. Tenkorang PO, Awuah WA, Ng JC, Kalmanovich J, Nazir A, Yarlagadda R, et al.
    Neurosurgery, 2023 Mar 01;92(3):e72-e73.
    PMID: 36700753 DOI: 10.1227/neu.0000000000002330
  3. Awuah WA, Ng JC, Bulut HI, Nazir A, Tenkorang PO, Yarlagadda R, et al.
    Int J Surg, 2023 Mar 01;109(3):519-520.
    PMID: 36927835 DOI: 10.1097/JS9.0000000000000025
  4. Awuah WA, Adebusoye FT, Tenkorang PO, Mehta A, Mustapha MJ, Debrah AF, et al.
    Int J Surg, 2023 Mar 01;109(3):227-229.
    PMID: 36906787 DOI: 10.1097/JS9.0000000000000020
  5. Wireko AA, Ohenewaa Tenkorang P, Fosuah Debrah A, Akin-Olugbemi T, Yarlagadda R, Mehta A, et al.
    Int J Surg, 2023 Mar 01;109(3):534-535.
    PMID: 36928287 DOI: 10.1097/JS9.0000000000000011
  6. Ha CHX, Lee NK, Rahman T, Hwang SS, Yam WK, Chee XW
    J Biomol Struct Dyn, 2023 Apr;41(6):2146-2159.
    PMID: 35067186 DOI: 10.1080/07391102.2022.2028677
    The Human Immunodeficiency Virus (HIV) infection is a global pandemic that has claimed 33 million lives to-date. One of the most efficacious treatments for naïve or pretreated HIV patients is the HIV integrase strand transfer inhibitors (INSTIs). However, given that HIV treatment is life-long, the emergence of HIV strains resistant to INSTIs is an imminent challenge. In this work, we showed two best regression QSAR models that were constructed using a boosted Random Forest algorithm (r2 = 0.998, q210CV = 0.721, q2external_test = 0.754) and a boosted K* algorithm (r2 = 0.987, q210CV = 0.721, q2external_test = 0.758) to predict the pIC50 values of INSTIs. Subsequently, the regression QSAR models were deployed against the Drugbank database for drug repositioning. The top-ranked compounds were further evaluated for their target engagement activity using molecular docking studies and accelerated Molecular Dynamics simulation. Lastly, their potential as INSTIs were also evaluated from our literature search. Our study offers the first example of a large-scale regression QSAR modelling effort for discovering highly active INSTIs to combat HIV infection.Communicated by Ramaswamy H. Sarma.
  7. Wireko AA, Ng JC, David L, Abdul-Rahman T, Sikora V, Isik A
    Int J Surg, 2023 Apr 10;110(1):571-3.
    PMID: 37026787 DOI: 10.1097/JS9.0000000000000000
  8. Awuah WA, Ng JC, Nazir A, Tenkorang PO, Yarlagadda R, Kalmanovich J, et al.
    Int J Surg, 2023 May 01;109(5):1080-1082.
    PMID: 36927691 DOI: 10.1097/JS9.0000000000000125
  9. Kundu M, Ng JC, Awuah WA, Huang H, Yarlagadda R, Mehta A, et al.
    Postgrad Med J, 2023 May 22;99(1170):240-243.
    PMID: 36892407 DOI: 10.1093/postmj/qgad002
    The tremendous evolution in modern technology has led to a paradigm shift in neurosurgery. The latest advancements such as augmented reality, virtual reality, and mobile applications have been incorporated into neurosurgical practice. NeuroVerse, representing the application of the metaverse in neurosurgery, brings enormous potential to neurology and neurosurgery. Implementation of NeuroVerse could potentially elevate neurosurgical and interventional procedures, enhance medical visits and patient care, and reshape neurosurgical training. However, it is also vital to consider the challenges that may be associated with its implementation, such as privacy issues, cybersecurity breaches, ethical concerns, and widening of existing healthcare inequalities. NeuroVerse adds phenomenal dimensions to the neurosurgical environment for patients, doctors, and trainees, and represents an incomparable advancement in the delivery of medicine. Therefore, more research is needed to encourage widespread use of the metaverse in healthcare, particularly focusing on the areas of morality and credibility. Although the metaverse is expected to expand rapidly during and after the COVID-19 pandemic, it remains to be seen whether it represents an emerging technology that will revolutionize our society and healthcare or simply an immature condition of the future.
  10. Wireko AA, Tenkorang PO, Ng JC, David L, Yarlagadda R, Abdul-Rahman T, et al.
    Int J Surg, 2023 Jun 01;109(6):1808-1809.
    PMID: 36927817 DOI: 10.1097/JS9.0000000000000048
  11. Vadlamani VMK, Gunasinghe KKJ, Chee XW, Rahman T, Harper MT
    Sci Rep, 2023 Jun 02;13(1):8958.
    PMID: 37268726 DOI: 10.1038/s41598-023-36257-3
    CD39 (ectonucleoside triphosphate diphosphohydrolase-1; ENTPD1) metabolizes extracellular ATP and ADP to AMP. AMP is subsequently metabolized by CD79 to adenosine. CD39 activity is therefore a key regulator of purinergic signalling in cancer, thrombosis, and autoimmune diseases. In this study we demonstrate that soluble, recombinant CD39 shows substrate inhibition with ADP or ATP as the substrate. Although CD39 activity initially increased with increasing substrate concentration, at high concentrations of ATP or ADP, CD39 activity was markedly reduced. Although the reaction product, AMP, inhibits CD39 activity, insufficient AMP was generated under our conditions to account for the substrate inhibition seen. In contrast, inhibition was not seen with UDP or UTP as substrates. 2-methylthio-ADP also showed no substrate inhibition, indicating the nucleotide base is an important determinant of substrate inhibition. Molecular dynamics simulations revealed that ADP can undergo conformational rearrangements within the CD39 active site that were not seen with UDP or 2-methylthio-ADP. Appreciating the existence of substrate inhibition of CD39 will help the interpretation of studies of CD39 activity, including investigations into drugs that modulate CD39 activity.
  12. Awuah WA, Tenkorang PO, Ng JC, Abdul-Rahman T
    Neurosurgery, 2023 Jul 01;93(1):e16.
    PMID: 37097024 DOI: 10.1227/neu.0000000000002515
  13. Adebusoye FT, Awuah WA, Swaminathan N, Ghosh S, Wellington J, Abdul-Rahman T, et al.
    Neurosurgery, 2023 Aug 01;93(2):e30-e31.
    PMID: 37192472 DOI: 10.1227/neu.0000000000002527
  14. Awuah WA, Huang H, Kalmanovich J, Mehta A, Mikhailova T, Ng JC, et al.
    Medicine (Baltimore), 2023 Aug 11;102(32):e34614.
    PMID: 37565922 DOI: 10.1097/MD.0000000000034614
    The circadian rhythm (CR) is a fundamental biological process regulated by the Earth's rotation and solar cycles. It plays a critical role in various bodily functions, and its dysregulation can have systemic effects. These effects impact metabolism, redox homeostasis, cell cycle regulation, gut microbiota, cognition, and immune response. Immune mediators, cycle proteins, and hormones exhibit circadian oscillations, supporting optimal immune function and defence against pathogens. Sleep deprivation and disruptions challenge the regulatory mechanisms, making immune responses vulnerable. Altered CR pathways have been implicated in diseases such as diabetes, neurological conditions, and systemic autoimmune diseases (SADs). SADs involve abnormal immune responses to self-antigens, with genetic and environmental factors disrupting self-tolerance and contributing to conditions like Systemic Lupus Erythematosus, Rheumatoid Arthritis, and Inflammatory Myositis. Dysregulated CR may lead to increased production of pro-inflammatory cytokines, contributing to the systemic responses observed in SADs. Sleep disturbances significantly impact the quality of life of patients with SADs; however, they are often overlooked. The relationship between sleep and autoimmune conditions, whether causal or consequential to CR dysregulation, remains unclear. Chrono-immunology investigates the role of CR in immunity, offering potential for targeted therapies in autoimmune conditions. This paper provides an overview of the connections between sleep and autoimmune conditions, highlighting the importance of recognizing sleep disturbances in SADs and the need for further research into the complex relationship between the CR and autoimmune diseases.
  15. Awuah WA, Ng JC, Mehta A, Nansubuga EP, Abdul-Rahman T, Kundu M, et al.
    Postgrad Med J, 2023 Aug 22;99(1175):941-945.
    PMID: 37280156 DOI: 10.1093/postmj/qgad043
    With increasing prevalence and an expected rise in disease burden, cancer is a cause of concern for African healthcare. The cancer burden in Africa is expected to rise to 2.1 million new cases per year and 1.4 million deaths annually by the year 2040. Even though efforts are being made to improve the standard of oncology service delivery in Africa, the current state of cancer care is not yet on par with the rise in the cancer burden. Cutting-edge technologies and innovations are being developed across the globe to augment the battle against cancer; however, many of them are beyond the reach of African countries. Modern oncology innovations targeted to ward Africa would be promising to address the high cancer mortality rates. The innovations should be cost-effective and widely accessible to tackle the rapidly rising mortality rate on the African continent. Though it may seem promising, a multidisciplinary approach is required to overcome the challenges associated with the development and implementation of modern oncology innovations in Africa.
  16. Karupaiah T, Mat Daud ZA, Khosla P, Khor BH, Sahathevan S, Kaur D, et al.
    J Ren Nutr, 2023 Nov;33(6S):S73-S79.
    PMID: 37597574 DOI: 10.1053/j.jrn.2023.08.003
    BACKGROUND: Recent surveys highlight gross workforce shortage of dietitians in global kidney health and significant gaps in renal nutrition care, with disparities greater in low/low-middle income countries.

    OBJECTIVE: This paper narrates ground experiences gained through the Palm Tocotrienols in Chronic Hemodialysis (PaTCH) project on kidney nutrition care scenarios and some Asian low-to-middle-income countries namely Bangladesh, India, and Malaysia.

    METHOD: Core PaTCH investigators from 3 universities (USA and Malaysia) were supported by their postgraduate students (n = 17) with capacity skills in kidney nutrition care methodology and processes. This core team, in turn, built capacity for partnering hospitals as countries differed in their ability to deliver dietitian-related activities for dialysis patients.

    RESULTS: We performed a structural component analyses of PaTCH affiliated and nonaffiliated (Myanmar and Indonesia) countries to identify challenges to kidney nutrition care. Deficits in patient-centered care, empowerment processes and moderating factors to nutrition care optimization characterized country comparisons. Underscoring these factors were some countries lacked trained dietitians whilst for others generalist dietitians or nonclinical nutritionists were providing patient care. Resolution of some challenges in low-to-middle-income countries through coalition networking to facilitate interprofessional collaboration and task sharing is described.

    CONCLUSIONS: We perceive interprofessional collaboration is the way forward to fill gaps in essential dietitian services and regional-based institutional coalitions will facilitate culture-sensitive capacity in building skills. For the long-term an advanced renal nutrition course such as the Global Renal Internet Course for Dietitians is vital to facilitate sustainable kidney nutrition care.

  17. Cheng Z, Hwang SS, Bhave M, Rahman T, Chee Wezen X
    J Chem Inf Model, 2023 Nov 13;63(21):6912-6924.
    PMID: 37883148 DOI: 10.1021/acs.jcim.3c01252
    Polo-like kinase 1 (PLK1) and p38γ mitogen-activated protein kinase (p38γ) play important roles in cancer pathogenesis by controlling cell cycle progression and are therefore attractive cancer targets. The design of multitarget inhibitors may offer synergistic inhibition of distinct targets and reduce the risk of drug-drug interactions to improve the balance between therapeutic efficacy and safety. We combined deep-learning-based quantitative structure-activity relationship (QSAR) modeling and hybrid-based consensus scoring to screen for inhibitors with potential activity against the targeted proteins. Using this combination strategy, we identified a potent PLK1 inhibitor (compound 4) that inhibited PLK1 activity and liver cancer cell growth in the nanomolar range. Next, we deployed both our QSAR models for PLK1 and p38γ on the Enamine compound library to identify dual-targeting inhibitors against PLK1 and p38γ. Likewise, the identified hits were subsequently subjected to hybrid-based consensus scoring. Using this method, we identified a promising compound (compound 14) that could inhibit both PLK1 and p38γ activities. At nanomolar concentrations, compound 14 inhibited the growth of human hepatocellular carcinoma and hepatoblastoma cells in vitro. This study demonstrates the combined screening strategy to identify novel potential inhibitors for existing targets.
  18. Awuah WA, Ahluwalia A, Ghosh S, Roy S, Tan JK, Adebusoye FT, et al.
    Eur J Med Res, 2023 Nov 16;28(1):529.
    PMID: 37974227 DOI: 10.1186/s40001-023-01504-w
    Single-cell ribonucleic acid sequencing (scRNA-seq) has emerged as a transformative technology in neurological and neurosurgical research, revolutionising our comprehension of complex neurological disorders. In brain tumours, scRNA-seq has provided valuable insights into cancer heterogeneity, the tumour microenvironment, treatment resistance, and invasion patterns. It has also elucidated the brain tri-lineage cancer hierarchy and addressed limitations of current models. Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis have been molecularly subtyped, dysregulated pathways have been identified, and potential therapeutic targets have been revealed using scRNA-seq. In epilepsy, scRNA-seq has explored the cellular and molecular heterogeneity underlying the condition, uncovering unique glial subpopulations and dysregulation of the immune system. ScRNA-seq has characterised distinct cellular constituents and responses to spinal cord injury in spinal cord diseases, as well as provided molecular signatures of various cell types and identified interactions involved in vascular remodelling. Furthermore, scRNA-seq has shed light on the molecular complexities of cerebrovascular diseases, such as stroke, providing insights into specific genes, cell-specific expression patterns, and potential therapeutic interventions. This review highlights the potential of scRNA-seq in guiding precision medicine approaches, identifying clinical biomarkers, and facilitating therapeutic discovery. However, challenges related to data analysis, standardisation, sample acquisition, scalability, and cost-effectiveness need to be addressed. Despite these challenges, scRNA-seq has the potential to transform clinical practice in neurological and neurosurgical research by providing personalised insights and improving patient outcomes.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links