Design: Anterior cruciate ligament transection (ACLT) was performed to induce OA in thirty-three male New Zealand white rabbits and were randomly divided into three groups: Channa, glucosamine, and control group. The control group received drinking water and the Channa and glucosamine groups were orally administered with 51.4 mg/kg of Channa extract and 77.5 mg/kg of glucosamine sulphate in drinking water, respectively, for eight weeks and then sacrificed. The articular cartilage was evaluated macroscopically and histologically using semiquantitative and quantitative methods. Serum cartilage oligomeric matric protein (COMP), cyclooxygenase 2 (COX-2) enzyme, and prostaglandin E2 (PGE2) were also determined.
Results: Macroscopic analysis revealed that Channa group have a significantly lower severity grade of total macroscopic score compared to the control (p < 0.001) and glucosamine (p < 0.05) groups. Semiquantitative histology scoring showed that both Channa and glucosamine groups had lower severity grading of total histology score compared to the control group (p < 0.001). In comparison with the control, Channa group had lower histopathological changes in three compartments of the joint compared to glucosamine group which had lower histological scoring in two compartments only. The cartilage thickness, area, and roughness of both Channa (p < 0.05) and glucosamine (p < 0.05) groups were superior compared to the control group. However, the Channa group demonstrated significantly less cartilage roughness compared to the glucosamine group (p < 0.05). Serum COMP levels were lower in both Channa (p < 0.05) and glucosamine (p < 0.05) groups compared to the control group.
Conclusion: Both oral administration of Channa extract and glucosamine exhibited chondroprotective action on an ACLT OA-induced rabbit model. However, Channa was superior to glucosamine in maintaining the structure of the cartilage.
METHODS: hUC-MSCs were labelled with GFP-Luc2 protein, followed by characterisation with flow cytometry. Upon intravenous infusion of transduced hUC-MSCs into the healthy BALB/c mice, the cells were dynamically monitored through the bioluminescent imaging (BLI) approach.
RESULTS: Transduction of hUC-MSCs with GFP-Luc2 not only preserved the characteristics of MSCs, but also allowed live monitoring of transduced cells in the mice model. Upon systemic administration, BLI showed that transduced hUC-MSCs first localised predominantly in the lungs of healthy BALB/c mice and mainly remained in the lungs for up to 3 days before eventually cleared from the body. At terminal sacrifice, plasma chemistry biomarkers remained unchanged except for C-peptide levels, which were significantly reduced in the hUC-MSCs group. Histopathological findings further revealed that hUC-MSCs infusion did not cause any adverse effects and toxicity to lung, liver and heart tissues.
CONCLUSIONS: Collectively, systemically administrated hUC-MSCs was safe and demonstrated dynamic homing capacity before eventually disappearing from the body.