Displaying publications 41 - 51 of 51 in total

Abstract:
Sort:
  1. Abd Ghafar SZ, Muthukrishnan S, Zolkeflee NKZ, Natrah I, Abas F
    Chem Biodivers, 2024 Dec 01.
    PMID: 39617725 DOI: 10.1002/cbdv.202402282
    The UHPLC-MS/MS metabolomics approach was employed to profile and characterize multi-components in Halamphora sp. extracted with different solvents that contribute to quorum sensing inhibitory (QSI) activity. A total of 37 and 34 metabolites were tentatively identified from negative and positive ion modes, respectively. The metabolites have been assigned to various groups, including fatty acids, glycolipids, sterols, diazines, flavonoids, peptides, carotenoids, and pigments. Multivariate data analysis showed that the QSI activity in the acetone extract was due to tumonoic acid A, terpeptin derivatives, pheophorbide A, hydroxyhexadeca-1,5-dien-3-ynoxy]propane-1,2-diol, l-methionyl-l-tyrosine, stearidonic, hexadecadienoic, tricosenoic, palmitic, and linolenic acids. These metabolites were more concentrated and differed significantly in acetone extract compared to other extracts. Acetone extract displayed a cluster of nodulisporic acid and fucoxanthin through MS/MS-based molecular networking (MN) platform. The present study shows that the liquid chromatography mass spectrometry (LCMS)-based metabolomics and MN effectively identify QSI-active metabolites in Halamphora sp. extracts, which can be promoted as a natural antifoulant.
  2. Akhtar MT, Qadir R, Altaf U, Almas T, Batool S, Ikram MS, et al.
    Chem Biodivers, 2024 Dec 29.
    PMID: 39804576 DOI: 10.1002/cbdv.202402512
    The current study was conducted to characterize the vinegar extract of Nigella sativa and evaluate its biological activities using in vitro and in vivo studies. The N. sativa extract (NSE) was prepared by macerating seeds in a mixture of water and synthetic vinegar (1:10). The antioxidant potential of NSE was assessed, revealing high total phenolic contents (431.66 mg/100 g), total flavonoid contents (73.45 mg/100 g), total antioxidant capacity (118.55 mg/100 g), and strong radical scavenging potential (89.67%). The anticancer activity of NSE showed insignificant cytotoxic effects on HepG2 liver cell lines (96.61 ± 3.00). An in vivo animal trial was performed, and NSE significantly (p 
  3. Aini Khairunnisa N, Yuandani, Raina Nasution H, Sari Utami D, Frimayanti N, Jantan I, et al.
    Chem Biodivers, 2025 Jan;22(1):e202401291.
    PMID: 39246102 DOI: 10.1002/cbdv.202401291
    Citrus hystrix essential oil (CHEO) have shown various pharmacological properties including antibacterial activity. This EO also possessed antibacterial effect against foodborne pathogens. There is less information available about the synergy interaction between CHEO and tetracycline, as well as their mechanism of action. Therefore, this study was conducted to evaluate the synergistic effect of CHEO and tetracycline against clinical isolate of Escherichia coli. Antibiofilm, bacteriolytic, and efflux pump inhibitor activities were also performed. The chemical composition of CHEO was analysed using GC-MS. Three major compounds, D-limonene (25.02 %), β-pinene (23.37 %), and β-sabinene (22.20 %) were identified. CHEO exhibited moderate antibacterial activity with MIC value of 250 μg/mL. The combination of CHEO (7.8 μg/mL) and tetracycline (62.5 μg/mL) produced a synergistic effect on E. coli with fractional inhibitory concentration index of 0.5. This mixture inhibited biofilm formation in E. coli. The combination of 7.8 μg/mL CHEO and 62.5 μg/mL tetracycline demonstrated bacteriolytic activity. In addition, the CHEO at 250 μg/mL showed a significant effect in inhibiting efflux pump. D-limonene has a binding free energy value of -20.13 kcal/mol with ompA transmembrane domain of E. coli. This finding indicates that CHEO has a potency to be developed as natural antibacterial against E. coli.
  4. Prabakaran S, Saad HM, Tan CH, Syed Abdul Rahman SN, Sim KS
    Chem Biodivers, 2025 Jan;22(1):e202401086.
    PMID: 39289837 DOI: 10.1002/cbdv.202401086
    Kaempferia parviflora or commonly known as "Kunyit hitam" by locals, is an edible plant, native to tropical regions, has been extensively utilized for culinary and medicinal applications. The present study aimed to investigate the phytochemical composition and biological activities of the rhizomes of K. parviflora. The ethanol crude and fractionated extracts (hexane and chloroform) of the rhizomes were evaluated for their total phenolic content, total steroidal content, as well as antioxidant, anti-obesogenic, and anti-diabetic activities. The chloroform extract demonstrated the highest concentration of plant sterols (432±0.23 mg BSE/g extract) and a substantial amount of phenolic compounds (1.19×103±0.41 mg GAE/g extract). Gas chromatography-mass spectrometry (GC/MS) analysis revealed that the chloroform extract of the rhizomes is predominantly composed of bioactive flavonoids including tectochrysin (1), 5,7-dimethoxyflavone (2), 3,5,7-trimethoxyflavone (3), 3,4',5,7-tetramethoxyflavone (4), and 4',5,7-trimethoxyflavone (5). Furthermore, the chloroform extract exhibited the highest overall radical scavenging and α-glucosidase inhibitory activities, which can be attributed to the presence of compounds 1-5 in the extract. Collectively, these findings suggest that the chloroform extract of the rhizomes of K. parviflora is a potentially valuable source of bioactive compounds with antioxidant, anti-obesogenic, and anti-diabetic properties, with potential application in therapeutics and functional foods.
  5. Belmehdi O, Mssillou I, Khalid A, Abdalla AN, Almalki M, Alqurashi RS, et al.
    Chem Biodivers, 2025 Feb;22(2):e202401463.
    PMID: 39402872 DOI: 10.1002/cbdv.202401463
    Bioactive phytochemicals act as important factors with preventive and therapeutic potential in the pathogenesis of several disorders, often related to oxidative stress. Many dietary plant secondary metabolites could lower these conditions. Sorbifolin is one of these metabolites. This work is the first review of sorbifolin, a flavone detected in various plant matrices as a major compound. The present study discussed the natural sources, extraction, purification, quantification, and assessment of the biological activities of sorbifolin. Several databases including Google Scholar, Web of Sciences, and Science-Direct were consulted for relevant English articles related to sorbifolin, the phytochemical profiles of several medicinal plants containing this compound, and its biological activities, such as antioxidant, anticancer, antimicrobial, anti-inflammatory, and antidiabetic. The positive in vitro and in silico outcomes reported in the literature should be followed by additional in vivo and clinical investigations to further research the mechanisms of action, pharmacokinetic/pharmacodynamic activities, toxicological effects, pharmacological properties, and therapeutic potential of sorbifolin.
  6. Shakila, Abbasi MA, Aziz-Ur-Rehman, Siddiqui SZ, Nazir M, Muhammad S, et al.
    Chem Biodivers, 2024 Nov 21.
    PMID: 39572384 DOI: 10.1002/cbdv.202401806
    Biological screening combined with the synthesis of heterocyclic compounds with numerous functions is the most effective approach available for pharmacological assessment of potential future medications. In the under taken research that is presented here, 4-(1H-indol-3-yl)butanoic acid was sequentially converted into 4-(1H-indol-3-yl)butanoate, 4-(1H-indol-3-yl)butanohydrazide, and 5-[3-(1H-indol-3-yl)propyl]-1,2,4-triazole-2-thiol as a nucleophile. By treating aryl amines with 3-bromopropanoyl chloride in a series of parallel reactions, different electrophiles were created, leading to the formation of N-(aryl)-3-bromopropanamides. After that, several electrophiles were used in the nucleophilic substitution process of 5 to produce the final bi-heterocyclic derivative. The structural confirmation of all the synthesized compounds was done by IR, 1H-NMR, 13C-NMR, and CHN analysis data. The enzyme inhibitory effects of these bi-heterocyclic propanamides were evaluated against elastase, and all these molecules were identified as potent inhibitors relative to the standard oleanolic acid with IC50 value 13.453 ± 0.015 µM used. The kinetics mechanism was ascribed by evaluating the Lineweaver-Burk plots, which revealed that compound 9d inhibited elastase competitively to form an enzyme-inhibitor complex. The inhibition constant Ki calculated from Dixon plots for this compound was 0.51 µM. Compound 9d's activity (IC50 = 0.142 ± 0.014 µM) significantly increased when a slightly bulky ethyl group was replaced for the solitary methyl group in 9c at the para-position. However, compound 9e's activity was significantly lower (IC50 = 38.338 ± 0.993 µM) when a more polar ethoxy group was replaced at the same para-position. This was likely because of electronic considerations. These molecules also exhibited mild cytotoxicity toward red blood cell membranes, when analyzing through hemolysis. So, these molecules might be deliberated as nontoxic medicinal scaffolds for dealing with the elastase-related ailments such as lung diseases, cyclic neutropenia, pruritic skin disease, and liver infection.
  7. Zhao ZY, Zang Y, Li J, Choo YM, Xiong J, Hu JF
    Chem Biodivers, 2024 Dec;21(12):e202401520.
    PMID: 39221607 DOI: 10.1002/cbdv.202401520
    A previously undescribed triterpenoid (fortunefuroic acid J, 1) was isolated from the endangered conifer Keteleeria hainanensis, along with 20 other known terpenoids. Compound 1 is characterized by an unusual 3,4-seco-9βH-lanost-3-oic acid motif, featuring a rare furoic acid moiety in its lateral chain. The structure elucidation of this compound was achieved through a combination of spectroscopic and computational methods. The C-15 epimers of 15-methoxypinusolidic acid (15R-8 and 15S-9) were successfully separated and identified for the first time. Compound 1 demonstrated dual inhibitory effects against ATP-citrate lyase (ACL, IC50: 0.92 μM) and acetyl-CoA carboxylase 1 (ACC1, IC50: 10.76 μM). Compounds 2 and 11 exclusively inhibited ACL, exhibiting IC50 values of 2.64 and 6.35 μM, respectively. Compound 1 is classified among the fortunefuroic acid-type compounds, previously isolated from K. fortunei, distinguished by the presence of a rare furoic acid moiety in their lateral chain. The chemotaxonomic significance of the 9βH-lanost-26-oic acids in Keteleeria was briefly discussed. These findings highlight the importance of conserving plant species diversity, thereby enhancing the exploration of structurally diverse compounds and potential avenues for developing new therapeutics targeting ACL/ACC1-associated diseases.
  8. Usman M, Alam A, Zainab, Khan M, Tüzün B, Ayaz M, et al.
    Chem Biodivers, 2025 Feb 13.
    PMID: 39946148 DOI: 10.1002/cbdv.202403385
    This work is based on the synthesis of new ether derivatives bearing benzothiazole (BTA) scaffold through multistep reaction process. Initially, BTA was prepared by refluxing 4-hydroxybenzaldehyde with aminothiophenol having sodium metabisulfite in dimethylformamide (DMF); subsequently, the product was further refluxed with different substituted benzyl and alkyl bromides in acetone to get ether hybrids of BTA in good yields. Structurally, these compounds were confirmed by means of 1H, 13C-NMR, and mass spectrometry and evaluated for in vitro thymidine phosphorylase (TP) inhibitory activity. In the series, seven compounds attributed excellent inhibition against TP enzyme better than the standard. Similarly, three compounds showed good activity, whereas two compounds were found inactive. Moreover, all these compounds showed no toxicity to normal human fibroblast cell line (BJ cell line). In addition, Gaussian calculations were performed on the 6-31++g(d,p) basis set to examine the 13 synthesized compounds at the B3LYP, HF, and M062X levels. Additionally, molecular docking calculations were performed on TP enzyme proteins (PDB IDs: 4EAD, 2WK6, and 4LHM), and absorption, distribution, metabolism, excretion/toxicity (ADME/T) calculations were performed to investigate the effects and responses of these compounds in human metabolism.
  9. Matar ZNA, Zainon Noor Z, Alhindi A, Yuliarto B
    Chem Biodivers, 2025 Mar 12.
    PMID: 40071492 DOI: 10.1002/cbdv.202403451
    Ensuring access to safe water and public health necessitates sensitive, quick, and dependable detection instruments. Conventional techniques frequently have prolonged detection durations, intricate processes, and the requirement for skilled staff. Biosensors augmented with nanomaterials provide enhanced sensitivity, specificity, and rapid detection of waterborne pathogens. This review rigorously examines current developments in paper-based nano-biosensors, emphasizing their detection ranges, limits of detection, and fundamental principles. It underscores the pivotal function of nanomaterials in augmenting biosensor efficacy, especially in terms of sensitivity, selectivity, and longevity. Different biosensor technologies are analyzed, highlighting their specific benefits and drawbacks in the detection of waterborne illnesses. The paper examines the significant obstacles in converting proof-of-concept biosensors into commercial devices, such as durability, cost-efficiency, and scalability. Proposed solutions strive to surmount these obstacles, seeking to connect laboratory advancements with practical applications. This work offers significant insights for researchers, professionals, and policymakers engaged in water quality monitoring. It underscores the necessity for more research to enhance biosensor technologies, mitigate current limits, and expedite the production of effective, market-ready biosensors for the protection of public health via dependable detection of waterborne pathogens.
  10. Devi NM, Nagarajan S, Singh CB, Khan MMA, Khan A, Khan N, et al.
    Chem Biodivers, 2024 Jun;21(6):e202300970.
    PMID: 37715949 DOI: 10.1002/cbdv.202300970
    BACKGROUND: Alpinia calcarata (AC) Roscoe of Zingiberaceae popularly known as lesser galangal has a widespread occurrence in China, India, Sri-Lanka, Bangladesh, Malaysia, Indonesia and Thailand. Essential oil (Eoil) was obtained from leaves/rhizomes of AC via hydro-distillation process.

    METHODS: To identify chemical ingredients in oil from leaves/rhizomes of AC through GC/MS technique for volatile components and their anti-oxidant, inflammatory/diabetic activities.

    RESULTS: The 38 and 65 components were found to make up 99.9 and 99.6 %, respectively in total of Eoil composition of AC leaves/rhizomes. Key chemical constituents were eucalyptol (28.7 % in leaves; 25.4 % in rhizomes), camphor (12.8 % in leaves; 4.2 % in rhizomes), and carotol (9.8 % in leaves; 5.6 % in rhizomes) found in oil of AC leaves/rhizomes. Colorimetric assay showed anti-oxidant activities in leaves and rhizomes are IC50=71.01±0.71 μg/mL and IC50=73.83±0.49 μg/mL, respectively in the Eoils. Eoils had high anti-oxidant capabilities in IC50-values of AC-L-Eoil=43.09±0.82&AC-Rh-Eoil=68.11±0.87 in reducing power in μg/mL was found. Albumin test of rhizome oil had IC50-values of 15.19±0.25 μg/mL. Concentrations range of 7.81 μg/mL and 250 μg/mL in the Eoils of AC leaves and rhizome, respectively by α-glucosidase inhibition assay.

    CONCLUSION: Our findings demonstrated that leaf oil was slightly more promising results than rhizome oil of AC extract, which was ultimately showed medicinal potential of secondary metabolites with anti-oxidant, diabetic/inflammatory activities. Further, Eoils of AC have a wide range of pharmacological potential and promising anti-diabetic effects.

  11. Al-Thiabat MG, Agrawal M, Kumar Sahu K, Alhawarri MB, Banisalman K, Al Jabal GA, et al.
    Chem Biodivers, 2025 Mar;22(3):e202402351.
    PMID: 39471253 DOI: 10.1002/cbdv.202402351
    This study explores the therapeutic potential of three proaporphine alkaloids-cissamaline, cissamanine, and cissamdine, which were recently isolated from Cissampelos capensis L.f., against Parkinson's disease (PD). Using computational techniques, we investigated their efficacy as inhibitors of a key protein in PD. ADMET analysis demonstrated that these alkaloids conform to the Lipinski, Pfizer, Golden Triangle, and GSK rules, indicating favorable safety, oral bioavailability, and a high probability of passing the human intestinal and blood-brain barriers. They were neither substrates nor inhibitors of any CYP enzymes tested, indicating minimal metabolic interference and an enhanced safety profile. Molecular docking studies revealed binding energies of -9.05 kcal/mol (cissamaline), -9.95 kcal/mol (cissamanine), and -10.65 kcal/mol (cissamdine) against MAO-B, a critical PD target, surpassing the control (zonisamide, -6.96 kcal/mol). The molecular interaction analyses were also promising, with interactions comparable to the control. Molecular dynamics (MD) simulations confirmed stable protein-ligand interactions, with root-mean-square deviation (RMSD) values ranging from 1.03 Å to 3.92 Å, root-mean-square fluctuation (RMSF) values remaining below 1.14 Å, and radius of gyration (RGyr) values between 20.20 Å and 20.50 Å, indicating compact structures. Hydrogen bonding analysis revealed maximum hydrogen bond counts of 6 (cissamanine), 5 (cissamaline), and 4 (cissamdine), demonstrating robust interactions with MAO-B. Density Functional Theory (DFT) calculations revealed the highest electrophilicity (ω =0.151), highest electron affinity (EA =0.075), and smallest HOMO-LUMO gap (ΔE =0.130) for cissamanine, indicating enhanced reactivity. These results advocate for further in vitro and in vivo studies to evaluate the compounds' potential as PD therapeutics.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links