Displaying publications 41 - 58 of 58 in total

Abstract:
Sort:
  1. Hossain MA, Hoque MZ
    Food Chem Toxicol, 2011 Jan;49(1):244-7.
    PMID: 21056073 DOI: 10.1016/j.fct.2010.10.023
    Polycyclic aromatic hydrocarbons (PAHs) occur as contaminants in different types of food predominantly from environmental pollution, food packaging and food processing and the levels found depend on the source of the contamination. PAHs emissions from automobile traffic and industry activities were shown to influence the PAHs levels and profiles in vegetables and fruits grown nearby. The present study was carried out to determine the levels of PAHs in samples of tomato, cabbage and apple, collected from six different places of urban and rural areas of plantation in Dhaka city. Eight PAHs listed in the priority pollutant of US Environment Protection Agency and regarded as carcinogens were analyzed in this study. The analytical method involved saponification with methanolic KOH, liquid-liquid extraction with cyclohexane, clean-up on silica gel column and determination by Gas chromatography and mass spectrometry. The mean levels of total PAHs were 9.50 μg/kg in tomato, 8.86 μg/kg in cabbage and 4.05 μg/kg in apple. Of the carcinogenic PAHs, benzo(a)anthracene was the most representative, being found in 89% of all samples analysed. Chrysene was not detected in any sample.
  2. Shah MD, Iqbal M
    Food Chem Toxicol, 2010 Dec;48(12):3345-53.
    PMID: 20828599 DOI: 10.1016/j.fct.2010.09.003
    Diazinon (O,O-diethyl-O-[2-isopropyl-6-methyl-4-pyrimidinyl] phosphoro thioate), an organo-phosphate insecticide, has been used worldwide in agriculture and domestic for several years, which has led to a variety of negative effects in non target species including humans. However, its nephrotoxic effects and mechanism of action has not been fully elucidated so far. Therefore, the present study was aimed at evaluating the nephrotoxic effects of diazinon and its mechanism of action with special reference to its possible ROS generating potential in rats. Treatment of rats with diazinon significantly enhances renal lipid peroxidation which is accompanied by a decrease in the activities of renal antioxidant enzymes (e.g. catalase, glutathione peroxidise, glutathione reductase, glucose-6-phosphate dehydrogenase, glutathione S-transferase) and depletion in the level of glutathione reduced. In contrast, the activities of renal γ-glutamyl transpeptidase and quinone reductase were increased. Parallel to these changes, diazinon treatment enhances renal damage as evidenced by sharp increase in blood urea nitrogen and serum creatinine. Additionally, the impairment of renal function corresponds histopathologically. In summary, our results indicate that diazinon treatment eventuates in decreased renal glutathione reduced, a fall in the activities of antioxidant enzymes including the enzymes involved in glutathione metabolism and excessive production of oxidants with concomitant renal damage, all of which are involved in the cascade of events leading to diazinon-mediated renal oxidative stress and toxicity. We concluded that in diazinon exposure, depletion of antioxidant enzymes is accompanied by induction of oxidative stress that might be beneficial in monitoring diazinon toxicity.
  3. Ho K, Yazan LS, Ismail N, Ismail M
    Food Chem Toxicol, 2011 Jan;49(1):25-30.
    PMID: 20807560 DOI: 10.1016/j.fct.2010.08.023
    Vanillin is useful as anti-sickle cell anemia, anti-mutagen and anti-bacteria agent. However, vanillin must be administered at high concentration and cannot be oxidized by the upper gastrointestinal track of patients to be medically effective. In this study, we assessed the toxic effect of vanillin when administered in an un-oxidized form at high concentrations (150 and 300 mg/kg) via oral and intra-peritoneal injection. It was found that 300 mg/kg vanillin injection caused the rats to be unconscious without exerting any toxic effect on blood cells, kidney and liver. Besides, it showed blood protective property. Further analysis with GenomeLab GeXP genetic system on brain tissues showed that the expression of most xenobiotic metabolism, cell progression, tumor suppressor, DNA damage and inflammation genes were maintained at normal level. However, the expression of a few xenobiotic metabolism, cell cycle arrest and apoptosis genes were up-regulated by 5% ethanol injection. Nevertheless, when 5% ethanol was injected with the presence of vanillin, the expression was back to normal level. It is postulated that vanillin might have neuro-protective property. In conclusion, vanillin is not toxic at high concentration in both oral and intra-peritoneal injection and could provide blood and brain protective properties.
  4. Haleagrahara N, Jackie T, Chakravarthi S, Rao M, Pasupathi T
    Food Chem Toxicol, 2010 Oct;48(10):2688-94.
    PMID: 20600524 DOI: 10.1016/j.fct.2010.06.041
    Several environmental toxins with toxic effects to the bone marrow have been identified. Pathology associated with lead intoxication is due to the cellular damage mediated by free radicals. In the current study, we examined the effect of Etlingera elatior extract on lead-induced changes in the oxidative biomarkers and histology of bone marrow of rats. Sprague-Dawley rats were exposed to 500 ppm lead acetate in their drinking water for 14 days. E. elatior extract was treated orally (100mg/kg body weight) in combination with, or after lead acetate treatment. The results showed that there was a significant increase in lipid hydroperoxide, protein carbonyl content and a significant decrease in total antioxidants, super oxide dismutase, glutathione peroxidase and glutathione--S-transferase in bone marrow after lead acetate exposure. Treatment with E. elatior decreased lipid hydroperoxides and protein carbonyl contents and significantly increased total antioxidants and antioxidant enzymes. Treatments with E. elatior extract also reduced, lead-induced histopathological damage in bone marrow. In conclusion, these data suggest that E. elatior has a powerful antioxidant effect, and it protects the lead acetate-induced bone marrow oxidative damage in rats.
  5. Khalil MI, Sulaiman SA, Gan SH
    Food Chem Toxicol, 2010 Aug-Sep;48(8-9):2388-92.
    PMID: 20595027 DOI: 10.1016/j.fct.2010.05.076
    5-Hydroxymethylfurfural (HMF) content is an indicator of the purity of honey. High concentrations of HMF in honey indicate overheating, poor storage conditions and old honey. This study investigated the HMF content of nine Malaysian honey samples, as well as the correlation of HMF formation with physicochemical properties of honey. Based on the recommendation by the International Honey Commission, three methods for the determination of HMF were used: (1) high performance liquid chromatography (HPLC), (2) White spectrophotometry and (3) Winkler spectrophotometry methods. HPLC and White spectrophotometric results yielded almost similar values, whereas the Winkler method showed higher readings. The physicochemical properties of honey (pH, free acids, lactones and total acids) showed significant correlation with HMF content and may provide parameters that could be used to make quick assessments of honey quality. The HMF content of fresh Malaysian honey samples stored for 3-6 months (at 2.80-24.87 mg/kg) was within the internationally recommended value (80 mg/kg for tropical honeys), while honey samples stored for longer periods (12-24 months) contained much higher HMF concentrations (128.19-1131.76 mg/kg). Therefore, it is recommended that honey should generally be consumed within one year, regardless of the type.
  6. Abdullah R, Alhusainy W, Woutersen J, Rietjens IM, Punt A
    Food Chem Toxicol, 2016 Jun;92:104-16.
    PMID: 27016491 DOI: 10.1016/j.fct.2016.03.017
    Aristolochic acids are naturally occurring nephrotoxins. This study aims to investigate whether physiologically based kinetic (PBK) model-based reverse dosimetry could convert in vitro concentration-response curves of aristolochic acid I (AAI) to in vivo dose response-curves for nephrotoxicity in rat, mouse and human. To achieve this extrapolation, PBK models were developed for AAI in these different species. Subsequently, concentration-response curves obtained from in vitro cytotoxicity models were translated to in vivo dose-response curves using PBK model-based reverse dosimetry. From the predicted in vivo dose-response curves, points of departure (PODs) for risk assessment could be derived. The PBK models elucidated species differences in the kinetics of AAI with the overall catalytic efficiency for metabolic conversion of AAI to aristolochic acid Ia (AAIa) being 2-fold higher for rat and 64-fold higher for mouse than human. Results show that the predicted PODs generally fall within the range of PODs derived from the available in vivo studies. This study provides proof of principle for a new method to predict a POD for in vivo nephrotoxicity by integrating in vitro toxicity testing with in silico PBK model-based reverse dosimetry.
  7. Nna VU, Abu Bakar AB, Md Lazin MRML, Mohamed M
    Food Chem Toxicol, 2018 Oct;120:305-320.
    PMID: 30026088 DOI: 10.1016/j.fct.2018.07.028
    Diabetes mellitus is characterized by hyperglycemia which causes oxidative stress. Propolis has been reported to have antihyperglycemic and antioxidant potentials. The present study therefore examined the anti-hyperglycemic, antioxidant and anti-inflammatory activities of Malaysian propolis (MP) using streptozotocin-induced diabetic rats. Ethanol extract of MP showed in vitro antioxidant (DPPH, FRAP and H2O2 radical scavenging) and α-glucosidase inhibition activities. Male Sprague Dawley rats were either treated with distilled water (normal control and diabetic control), MP (300 mg/kg b. w.), metformin (Met) (300 mg/kg b. w.) or both. After four weeks, fasting blood glucose decreased, while body weight change and serum insulin level increased significantly in MP, Met and MP + Met treated diabetic groups compared to diabetic control (DC) group. Furthermore, pancreatic antioxidant enzymes, total antioxidant capacity, interleukin (IL)-10 and proliferating cell nuclear antigen increased, while malondialdehyde, nuclear factor-kappa B (p65), tumor necrosis factor alpha, IL-1β and cleaved caspase-3 decreased significantly in the treated diabetic groups compared to DC group. Histopathology of the pancreas showed increased islet area and number of beta cells in the treated groups, compared to DC group, with D + MP + Met group comparable to normal control. We conclude that MP has anti-hyperglycemic, antioxidant, anti-inflammatory and antiapoptotic potentials, and exhibits synergistic effect with metformin.
  8. Teng H, Chen Y, Lin X, Lv Q, Chai TT, Wong FC, et al.
    Food Chem Toxicol, 2019 Jul;129:138-143.
    PMID: 31034934 DOI: 10.1016/j.fct.2019.04.043
    The aim of this study was to assess the inhibitory effects of Sonchus olearleu extract on the generation of heterocyclic amines in roasted pork patties cooked by pan-frying. All samples were cooked for two different durations (45 min and 105 min) under 200 °C and 230 °C. 2-amino-3-methylimidazo[4,5-f]quinoline (IQ), 2-ami- no-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), 2-amino-3,4,8-trimethylimidazo[4,5-f]quinox-aline (4,8-DiMeIQx), harman, and norharman were detected and quantified. In patties cooked at 230 °C for 105 min, S. olearleu extract (0.5%) significantly inhibited the formation of IQ, harman, and norharman by 39%, 67%, and 63%, respectively. In contrast to IQ, the levels of harman and norharman were significantly reduced by the extracts tested. However, no such effects were observed for MeIQx and 4, 8-DiMeIQx. Notably, the inhibitory effect on heterocyclic amines is significantly correlated with the antioxidant potential and total phenolic content of S. olearleu extract.
  9. Omar Zaki SS, Katas H, Hamid ZA
    Food Chem Toxicol, 2015 Nov;85:31-44.
    PMID: 26051352 DOI: 10.1016/j.fct.2015.05.017
    Chitosan nanoparticles (CSNPs) have potential applications in stem cell research. In this study, ex vivo cytotoxicity of CSNPs on mouse bone marrow-derived (MBMCs) hematopoietic stem and progenitor cells (HSPCs) was determined. MBMCs were exposed to CSNPs of different particle sizes at various concentrations for up to 72 h. Cytotoxicity effect of CSNPs on MBMCs was determined using MTT, Live/Dead Viability/Cytotoxicity assays and flow cytometry analysis of surface antigens on HSCs (Sca-1(+)), myeloid-committed progenitors (CD11b(+), Gr-1(+)), and lymphoid-committed progenitors (CD45(+), CD3e(+)). At 24 h incubation, MBMCs' viability was not affected by CSNPs. At 48 and 72 h, significant reduction was detected at higher CSNPs concentrations. Small CSNPs (200 nm) significantly reduced MBMCs' viability while medium-sized particle (∼400 nm) selectively promoted MBMCs growth. Surface antigen assessment demonstrated lineage-dependent effect. Significant decrease in Sca-1(+) cells percentage was observed for medium-sized particle at the lowest CSNPs concentration. Meanwhile, reduction of CD11b(+) and Gr-1(+) cells percentage was detected at high and intermediate concentrations of medium-sized and large CSNPs. Percentage of CD45(+) and CD3e(+) cells along with ROS levels were not significantly affected by CSNPs. In conclusion, medium-sized and large CSNPs were relatively non-toxic at lower concentrations. However, further investigations are necessary for therapeutic applications.
  10. Saleem H, Khurshid U, Sarfraz M, Ahmad I, Alamri A, Anwar S, et al.
    Food Chem Toxicol, 2021 Sep;155:112404.
    PMID: 34246708 DOI: 10.1016/j.fct.2021.112404
    Capparis spinose L. also known as Caper is of great significance as a traditional medicinal food plant. The present work was targeted on the determination of chemical composition, pharmacological properties, and in-vitro toxicity of methanol and dichloromethane (DCM) extracts of different parts of C. spinosa. Chemical composition was established by determining total bioactive contents and via UHPLC-MS secondary metabolites profiling. For determination of biological activities, antioxidant capacity was determined through DPPH, ABTS, CUPRAC, FRAP, phosphomolybdenum, and metal chelating assays while enzyme inhibition against cholinesterase, tyrosinase, α-amylase and α-glucosidase were also tested. All the extracts were also tested for toxicity against two breast cell lines. The methanolic extracts were found to contain highest total phenolic and flavonoids which is correlated with their significant radical scavenging, cholinesterase, tyrosinase and glucosidase inhibition potential. Whereas DCM extracts showed significant activity for reducing power, phosphomolybdenum, metal chelation, tyrosinase, and α-amylase inhibition activities. The secondary metabolites profiling of both methanolic extracts exposed the presence of 21 different secondary metabolites belonging to glucosinolate, alkaloid, flavonoid, phenol, triterpene, and alkaloid derivatives. The present results tend to validate folklore uses of C. spinose and indicate this plant to be used as a potent source of designing novel bioactive compounds.
  11. Duan H, Khan GJ, Shang LJ, Peng H, Hu WC, Zhang JY, et al.
    Food Chem Toxicol, 2021 Apr;150:112058.
    PMID: 33582168 DOI: 10.1016/j.fct.2021.112058
    The present study uses network pharmacology to study the potential mechanism of Schisandra against atherosclerosis. Drug-disease targets were explored through the traditional Chinese medicine systemic pharmacology network. STRING database and Cytoscape software were employed to construct a component/pathway-target interaction network to screen the key regulatory factors from Schisandra. For cellular, biological and molecular pathways, Gene Ontology (GO) and KEGG pathway analyses were used while the interceptive acquaintances of the pathways was obtained through Metascape database. Initial molecular docking analyses of components from Schisandra pointed the possible interaction of non-muscle myosin ⅡA (NM ⅡA) against atherosclerosis. The screening results from GO and KEGG identified 525 possible targets of 18 active ingredients from Schisandra that further pointed 1451 possible pathways against the pathogenesis of disease whereas 167 targets were further refined based on common/interesting signaling target pathways. Further results of molecular signaling by docking identified very compatible binding between NM IIA and the constituents of Schisandra. Schisandra has a possible target of the serotonergic synapse, neuroactive ligand-receptor interaction and also has close interference in tumor pathways through PTGS2, NOS3, HMOX1 and ESR1. Moreover, it is also concluded that Schisandra has a close association with neuroendocrine, immune-inflammation and oxidative stress. Therefore, it may have the potential of therapeutic utility against atherosclerosis.
  12. Saleem H, Khurshid U, Sarfraz M, Tousif MI, Alamri A, Anwar S, et al.
    Food Chem Toxicol, 2021 Aug;154:112348.
    PMID: 34144099 DOI: 10.1016/j.fct.2021.112348
    Suaeda fruticosa is an edible medicinal halophyte known for its traditional uses. In this study, methanol and dichloromethane extracts of S. fruticosa were explored for phytochemical, biological and toxicological parameters. Total phenolic and flavonoid constituents were determined by using standard aluminum chloride and Folin-Ciocalteu methods, and UHPLC-MS analysis of methanol extract was performed for tentative identification of secondary metabolites. Different standard methods like DPPH, ABTS, FRAP, CUPRAC, total antioxidant capacity (TAC), and metal chelation assays were utilized to find out the antioxidant potential of extracts. Enzyme inhibition studies of extracts against acetylcholinesterase, butyrylcholinesterase, tyrosinase, α-amylase and, α-glucosidase enzymes were also studied. Likewise, the cytotoxicity was also assessed against MCF-7, MDA-MB-231, and DU-145 cell lines. The higher phenolic and flavonoids contents were observed in methanol extracts which can be correlated to its higher radical scavenging potential. Similarly, 11 different secondary metabolites were tentatively identified by UHPLC profiling. Both the extract showed significant inhibition against all the enzymes except for α-glucosidase. Moreover, docking studies were also performed against the tested enzymes. In the case of cytotoxicity, both the samples were found moderately toxic against the tested cell lines. This plant can be explored further for its potential therapeutic and edible uses.
  13. Cai Y, Lim HR, Khoo KS, Ng HS, Cai Y, Wang J, et al.
    Food Chem Toxicol, 2021 Dec;158:112607.
    PMID: 34653554 DOI: 10.1016/j.fct.2021.112607
    Microalgae metabolites include biologically active compounds with therapeutic effects such as anticancer, anti-inflammatory and immunomodulation effects. One of the most recent focuses is on utilizing microalgae lipid-based biologically active compounds in food applications. However, most microalgae biological active compounds in their natural forms have common drawbacks like low solubility, low physicochemical stability and strong susceptibility to degradation, which significantly limits their application in foods, therefore, it is important to find solutions to retain their functional properties. In the present work, a comprehensive review on multi-product biorefinery was carried out from upstream processing stage to downstream processing stage, and identify critical processes and factors that impact bioactive material acquisition and retention. Furthermore, since nanoencapsulation technology emerges as an effective solution for microalgae nutraceutical product's retention, this work also focus on the nanoparticle perspective and comprehensively reviews the current nanoencapsulation solutions of the microalgae bioactive extract products. The aim is to depict advances in the formulations of microalage bioactive nanoparticles and provide a critical analysis of the reported nanoparticle formation. Overall, through the investigation of microalgae from biomass to bioactive nanoparticles, we aim to facilitate microalgae nutraceuticals incorporation as high value-added ingredients in more functional food that can improve human health.
  14. Waheed H, Farrukh S, Hussain A, Mukhtar A, Mubashir M, Saqib S, et al.
    Food Chem Toxicol, 2022 Feb;160:112773.
    PMID: 34953965 DOI: 10.1016/j.fct.2021.112773
    In hemodialysis process, membrane serves as a barrier between blood and the dialysate. The barrier when contacted by blood accompanied activation of coagulation, immunity, and cellular passageways. In the recent years, hemodialysis membrane's biocompatibility has become a issue which leads to reduce the performance during the separation process. In previous work, we developed and evaluated a cellulose-based membrane blended with polyaziridine or polyetyleneimine in formic acid for hydrophilicity, pure water flux, surface morphology, and permeation efficiency. Biocompatibility was accessed, by conducting cellular viability and cellular attachments tests. In this study, the membrane compared to a non-treated control, and cell viability revealed active and growing cell cultures after 14 days. During the cellular attachment experiment, cell cultures attached to the fabricated membrane simulated the formation of cell junctions, proving that the membrane is non-toxic and biocompatible. CA + PEI + FA membrane tested with a blood mimic fluid having density identical to renal patient's blood. The BSA concentration in the feed solution was the same as that in the blood of the renal patient. The results revealed that the CA + PEI + FA membrane was able to reject 99% bovine serum albumin (BSA) and 69.6% urea. Therefore, from biocompatibility and blood mimic fluid testing, it is confirmed that the CA + PEI + FA membrane is the finest implant for dialysis applications.
  15. Liew WP, Sabran MR, Than LT, Abd-Ghani F
    Food Chem Toxicol, 2022 Feb;160:112808.
    PMID: 34998910 DOI: 10.1016/j.fct.2022.112808
    The modulation of gut microbiota and proteome due to aflatoxin B1 (AFB1) by probiotics remains unclear. This study investigated the alterations of gut microbiota and proteome in AFB1-exposed rats treated with probiotic Lactobacillus casei Shirota (Lcs). Forty male Sprague Dawley rats were randomly divided into five groups (n = 8) comprised control, AFB1, AFB1+activated charcoal, AFB1+Lcs, and Lcs groups. The rats were subjected to different treatments via oral gavage for four weeks. Urine and serum were collected for the measurement of AFB1 biomarkers and organs were harvested for histological analysis. Metagenomic sequencing was performed on fecal samples to profile gut microbiota. Besides, AFB1 most affected organ i.e. jejunum was subjected to proteomic analysis. The results indicated that Lcs intervention significantly reduced AFB1 biomarkers. H&E-stained intestine showed Lcs alleviated AFB1-induced inflammation and abnormal cell growth, particularly at the jejunum. Although AFB1 increased potentially pathogenic bacteria and reduced beneficial bacteria abundance in feces, the microbiota composition was normalized with Lcs treatment. The gut proteome analysis of the jejunum sample showed several pathways of AFB1 toxicity, wherein Lcs treatment demonstrated its protective effect. It is concluded that metagenomic and proteomic approaches are useful tools to understand AFB1-Lcs interaction and detoxification mechanism in the gut.
  16. Yao M, Guo X, Shao X, Wei Y, Zhang X, Wang H, et al.
    Food Chem Toxicol, 2023 May;175:113725.
    PMID: 36925041 DOI: 10.1016/j.fct.2023.113725
    Lead (Pb) can pollute the environment and food through air, water and other means, resulting in human exposure to lead pollution, and there is no threshold level of lead toxicity, even small doses of lead will have a range of harmful effects in humans. This study demonstrates for the first time that dietary addition of soluble dietary fiber (SDF) from Prunus persica dregs reduces lead bioaccumulation in mice, and eliminates lead through feces. Compared with lead-exposed mice, SDF supplementation effectively prevented lead-induced changes in colon tissue, and increased expression of tight junction proteins (ZO-1 and occludin). We analyzed the effects of SDF on gut microbiota and metabolites by a combination of 16S rRNA high-throughput sequencing and untargeted metabolomics. The results showed that SDF altered lead-induced perturbations in the layout and structure of the gut microbiota, including increased Desulfovibrio and Alistipes abundance and decreased Bacteroidetes abundance. Meanwhile, we also provide evidence that SDF supplementation alters the levels of amino acids, bile acids, and lipids in the gut, and that these metabolites are closely associated with microbiota with good lead binding capacity. Therefore, we speculate that SDF has the potential to provide a protective effect against intestinal damage by promoting lead excretion.
  17. Nur Hidayah J, Abdul Razis AF, Jambari NN, Chai LC, You L, Sanny M
    Food Chem Toxicol, 2024 Mar;185:114502.
    PMID: 38346572 DOI: 10.1016/j.fct.2024.114502
    This study aimed to estimate the Malaysian adult population's current dietary exposure and margin of exposure (MOE) to the carcinogenic processing contaminant, acrylamide. A total of 448 samples from 11 types of processed foods were collected randomly throughout Malaysia in the year 2015 and 2016. Acrylamide was analysed in samples using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) with a limit of detection (LOD) of 10 μg/kg and a limit of quantification (LOQ) of 25 μg/kg. The highest average level of acrylamide (772 ± 752 μg/kg) was found in potato crisps, followed by French fries (415 ± 914 μg/kg) and biscuits (245 ± 195 μg/kg). The total acrylamide exposure for the adult Malaysian was 0.229 and 1.77 μg/kg body weight per day for average and high consumers, respectively. The MOE were 741 and 1875 for the average consumer based on cancer and non-cancer effects of acrylamide, respectively. Meanwhile, for high consumers, the MOE is 96 for cancer and 243 for non-cancer effects. These findings indicate potential carcinogenic risks from acrylamide exposure among Malaysian adults, especially in Malay and other Bumiputra groups compared to Chinese, Indian, and other ethnic groups, while non-cancer effects appeared less concerning.
  18. Haque KS, Islam MS, Ahmed S, Rahman MZ, Hemy DH, Islam MT, et al.
    Food Chem Toxicol, 2024 Mar 11.
    PMID: 38467293 DOI: 10.1016/j.fct.2024.114580
    This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links