Displaying publications 41 - 60 of 450 in total

Abstract:
Sort:
  1. Sutirman ZA, Rahim EA, Sanagi MM, Abd Karim KJ, Wan Ibrahim WA
    Int J Biol Macromol, 2020 Jun 15;153:513-522.
    PMID: 32142849 DOI: 10.1016/j.ijbiomac.2020.03.015
    A new crosslinked chitosan grafted with methyl methacrylate (M-CTS) adsorbent was synthesized via free radical polymerization for effective removal of Cu(II) ions from aqueous solution. Crosslinked chitosan (1 g) was grafted with 29.96 × 10-1 M methyl methacrylate in the presence of 2.63 × 10-1 M ammonium persulfate as initiator at 60 °C for 2 h to give grafting and yield percentages of 201% and 67%, respectively. Batch adsorption experiment was performed as a function of solution pH, initial metal ion concentration and contact time. The isotherm data were adequately described by Langmuir model, while kinetic study revealed that the pseudo-second order rate model best fitted for the experimental data. The maximum adsorption capacity for M-CTS at pH 4 was 192.31 mg g-1. Furthermore, the reusability of over six adsorption-desorption cycles suggested that M-CTS is a durable adsorbent and good candidate for metal ions treatment.
  2. Sutirman ZA, Sanagi MM, Abd Karim J, Abu Naim A, Wan Ibrahim WA
    Int J Biol Macromol, 2018 Feb;107(Pt A):891-897.
    PMID: 28935540 DOI: 10.1016/j.ijbiomac.2017.09.061
    Crosslinked chitosan beads were grafted with N-vinyl-2-pyrrolidone (NVP) using ammonium persulfate (APS) as free radical initiator. Important variables on graft copolymerization such as temperature, reaction time, concentration of initiator and concentration of monomer were optimized. The results revealed optimum conditions for maximum grafting of NVP on 1g crosslinked chitosan as follows: reaction temperature, 60°C; reaction time, 2h and concentrations of APS and NVP of 2.63×10-1M and 26.99×10-1M, respectively. The modified chitosan beads were characterized by FTIR spectroscopy, 13C NMR, SEM and BET to provide evidence of successful crosslinking and grafting reactions. The resulting material (cts(x)-g-PNVP) was evaluated as adsorbent for the removal of Cu(II) ions from aqueous solutions in a batch experiment. The Langmuir and Freundlich adsorption models were also applied to describe the equilibrium isotherms. The results showed that the adsorption of the copper ions onto the beads agreed well with Langmuir model with the maximum capacity (qmax) of 122mgg-1.
  3. Sutirman ZA, Sanagi MM, Wan Aini WI
    Int J Biol Macromol, 2021 Mar 31;174:216-228.
    PMID: 33516856 DOI: 10.1016/j.ijbiomac.2021.01.150
    The presence of heavy metal and radionuclides in water bodies has been a long-lasting environmental problem which results in many undesirable consequences. In this framework, the biosorption process, which uses inexpensive and naturally produced material such as alginate, is an alternative technology in the environmental remediation. This review provides relevant and recent literature regarding the application of alginate and its derivatives on removal of various heavy metal ions and radionuclides. The effects of process variables such as solution pH, adsorbent dosage, metal ion concentration, contact time, temperature and co-existing ions used in batch studies in addition to kinetic, isothermal models as well as thermodynamic that fit the adsorption experimental data are critically discussed. This review also includes mechanisms involved during adsorption process. Furthermore, future research needs for the removal of contaminants by alginate-based materials with the aims of improving their adsorption performance and their practical applications are commented.
  4. Soheilmoghaddam M, Wahit MU
    Int J Biol Macromol, 2013 Jul;58:133-9.
    PMID: 23567285 DOI: 10.1016/j.ijbiomac.2013.03.066
    In this study, novel nanocomposite films based on regenerated cellulose/halloysite nanotube (RC/HNT) have been prepared using an environmentally friendly ionic liquid 1-butyl-3-methylimidazolium chloride (BMIMCl) through a simple green method. The structural, morphological, thermal and mechanical properties of the RC/HNT nanocomposites were investigated using X-ray diffraction (XRD), Fourier transform infrared (FTIR), field emission scanning electron microscopy (FESEM), thermal analysis and tensile strength measurements. The results obtained revealed interactions between the halloysite nanotubes and regenerated cellulose matrix. The thermal stability and mechanical properties of the nanocomposite films, compared with pure regenerated cellulose film, were significantly improved When the halloysite nanotube (HNT) loading was only 2 wt.%, the 20% weight loss temperature (T20) increased 20°C. The Young's modulus increased from 1.8 to 4.1 GPa, while tensile strength increased from 35.30 to 60.50 MPa when 8 wt.% halloysite nanotube (HNT) was incorporated, interestingly without loss of ductility. The nanocomposite films exhibited improved oxygen barrier properties and water absorption resistance compared to regenerated cellulose.
  5. Khan R, Haider S, Khan MUA, Haider A, Razak SIA, Hasan A, et al.
    Int J Biol Macromol, 2023 Dec 31;253(Pt 5):127169.
    PMID: 37783243 DOI: 10.1016/j.ijbiomac.2023.127169
    The development of advanced multifunctional wound dressings remains a major challenge. Herein, a novel multilayer (ML) electrospun nanofibers (NFs) wound dressing based on diethylenetriamine (DETA) functionalized polyacrylonitrile (PAN), TiO2 nanoparticles (NPs) coating (Ct), and bioderived gelatin (Gel) was developed for potential applications in wound healing. The ML PAN-DETA-Ct-Gel membrane was developed by combining electrospinning, chemical functionalization, synthesis, and electrospray techniques, using a layer-by-layer method. The ML PAN-DETA-Ct-Gel membrane is comprised of an outer layer of PAN-DETA as a barrier to external microorganisms and structural support, an interlayer TiO2 NPs (Ct) as antibacterial function, and a contact layer (Gel) to improve biocompatibility and cell viability. The NFs membranes were characterized by scanning electron microscopy (SEM), surface profilometry, BET analysis, and water contact angle techniques to investigate their morphology, surface roughness, porosity, and wettability. The ML PAN-DETA-Ct-Gel wound dressing exhibited good surface roughness, porosity, and better wettability. Cell morphology, proliferation, and viability were determined using fibroblasts (3T3), and antibacterial assays were performed against six pathogens. The ML PAN-DETA-Ct-Gel NFs membrane showed good cell morphology, proliferation, viability, and antibacterial activity compared with other membranes. This new class of ML NFs membranes offers a multifunctional architecture with adequate biocompatibility, cell viability, and antibacterial activity.
  6. Teo HL, Wahab RA
    Int J Biol Macromol, 2020 Oct 15;161:1414-1430.
    PMID: 32791266 DOI: 10.1016/j.ijbiomac.2020.08.076
    There is an array of methodologies to prepare nanocellulose (NC) and its fibrillated form (CNF) with enhanced physicochemical characteristics. However, acids, bases or organosolv treatments on biomass are far from green, and seriously threaten the environment. Current approach to produce NC/CNF from biomass should be revised and embrace the concept of sustainability and green chemistry. Although hydrothermal process, high-pressure homogenization, ball milling technique, deep eutectic solvent treatment, enzymatic hydrolysis etc., are the current techniques for producing NC, the route designs remain imperfect. Herein, this review highlights the latest methodologies in the pre-processing and isolating of NC/CNF from lignocellulose biomass, by largely focusing on related papers published in the past two years till date. This article also explores the latest advancements in environmentally friendly NC extraction techniques that cooperatively use ball milling and enzymatic hydrolytic routes as an eco-efficient way to produce NC/CNF, alongside the potential applications of the nano-sized celluloses.
  7. Rahman INA, Attan N, Mahat NA, Jamalis J, Abdul Keyon AS, Kurniawan C, et al.
    Int J Biol Macromol, 2018 Aug;115:680-695.
    PMID: 29698760 DOI: 10.1016/j.ijbiomac.2018.04.111
    The chemical-catalyzed transesterification process to produce biofuels i.e. pentyl valerate (PeVa) is environmentally unfriendly, energy-intensive with tedious downstream treatment. The present work reports the use of Rhizomucor miehei lipase (RML) crosslinked onto magnetic chitosan/chitin nanoparticles (RML-CS/CH/MNPs). The approach used to immobilize RML onto the CS/CH/MNPs yielded RML-CS/CH/MNPs with an immobilized protein loading and specific activity of 7.6 mg/g and 5.0 U·g-1, respectively. This was confirmed by assessing data of field emission scanning electron microscopy, X-ray diffraction, thermal gravimetric analysis and Fourier transform infrared spectroscopy. A three-level-four-factor Box-Behnken design (incubation time, temperature, substrate molar ratio, and enzyme loading) was used to optimize the RML-CS/CH/MNP-catalyzed esterification synthesis of PeVa. Under optimum condition, the maximum yield of PeVa (97.8%) can be achieved in 5 h at 50 °C using molar ratio valeric acid:pentanol (1:2) and an enzyme load of 2 mg/mL. Consequently, operational stability experiments showed that the protocol adopted to prepare the CS/CH/MNP nanoparticles had increased the durability of RML. The RML-CS/CH/MNP could catalyze up to eight successive esterification cycles to produce PeVa. The study also demonstrated the functionality of CS/CH/MNP nanoparticles as an eco-friendly support matrix for improving enzymatic activity and operational stability of RML to produce PeVa.
  8. Elias N, Chandren S, Razak FIA, Jamalis J, Widodo N, Wahab RA
    Int J Biol Macromol, 2018 Jul 15;114:306-316.
    PMID: 29578010 DOI: 10.1016/j.ijbiomac.2018.03.095
    The contribution of chitosan/nanocellulose (CS-NC) to the enzymatic activity of Candida rugosa lipase covalently bound on the surface of CS-NC (CRL/CS-NC) was investigated. Cellulosic material from oil palm frond leaves (OPFL) were bleached, alkaline treated and acid hydrolyzed to obtain the purified NC and used as nano-fillers in CS. XRD, Raman spectroscopy and optical fluorescence microscopic analyses revealed existence of strong hydrogen bonds between CS and the NC nanofillers. The CRLs were successfully conjugated to the surface of the CS-NC supports via imine bonds that occurred through a Schiff's based mechanism. Process parameters for the immobilization of CRL were assessed for factors temperature, concentration of glutaraldehyde and pH, to afford the highest enzyme activity to achieve maximum conversion of butyl butyrate within 3h of incubation. Conversion as high as 88% was reached under an optimized condition of 25°C, 0.3% glutaraldehyde concentration and buffer at pH7. Thermal stability of CRL/CS-NCs was 1.5-fold greater than that of free CRL, with biocatalysts reusability for up to 8 successive esterification cycles. This research provides a promising approach for expanding the use of NC from OPFL for enhancing enzyme activity in favour of an alternative eco-friendly means to synthesize butyl butyrate.
  9. Mohamed MA, Abd Mutalib M, Mohd Hir ZA, M Zain MF, Mohamad AB, Jeffery Minggu L, et al.
    Int J Biol Macromol, 2017 Oct;103:1232-1256.
    PMID: 28587962 DOI: 10.1016/j.ijbiomac.2017.05.181
    A combination between the nanostructured photocatalyst and cellulose-based materials promotes a new functionality of cellulose towards the development of new bio-hybrid materials for various applications especially in water treatment and renewable energy. The excellent compatibility and association between nanostructured photocatalyst and cellulose-based materials was induced by bio-combability and high hydrophilicity of the cellulose components. The electron rich hydroxyl group of celluloses helps to promote superior interaction with photocatalyst. The formation of bio-hybrid nanostructured are attaining huge interest nowadays due to the synergistic properties of individual cellulose-based material and photocatalyst nanoparticles. Therefore, in this review we introduce some cellulose-based material and discusses its compatibility with nanostructured photocatalyst in terms of physical and chemical properties. In addition, we gather information and evidence on the fabrication techniques of cellulose-based hybrid nanostructured photocatalyst and its recent application in the field of water treatment and renewable energy.
  10. Kesavan S, Rajesh D, Shanmugam J, Aruna S, Gopal M, Vijayakumar S
    Int J Biol Macromol, 2023 Jul 31;244:125322.
    PMID: 37307980 DOI: 10.1016/j.ijbiomac.2023.125322
    A graphene oxide mediated hybrid nano system for pH stimuli-responsive and in vitro drug delivery targeted for cancer was described in this study. Graphene oxide (GO) functionalized Chitosan (CS) mediated nanocarrier capped with xyloglucan (XG) was fabricated with and without Kappa carrageenan (κ-C) from red seaweed, Kappaphycus alverzii, as an active drug. FTIR, EDAX, XPS, XRD, SEM and HR-TEM studies were carried out for GO-CS-XG nanocarrier loaded with and without active drugs to understand the physicochemical properties. XPS (C1s, N1s and O1s) confirmed the fabrications of XG and functionalization of GO by CS via the binding energies at 284.2 eV, 399.4 eV and 531.3 eV, respectively. The amount of drug loaded in vitro was 0.422 mg/mL. The GO-CS-XG nanocarrier showed a cumulative drug release of 77 % at acidic pH 5.3. In contrast to physiological conditions, the release rate of κ-C from the GO-CS-XG nanocarrier was considerably higher in the acidic condition. Thus, a pH stimuli-responsive anticancer drug release was successfully achieved with the GO-CS-XG-κ-C nanocarrier system for the first time. The drug release mechanism was carried out using various kinetic models that showed a mixed release behavior depending on concentration and diffusion/swelling mechanism. The best-fitting model which supports our release mechanism are zero order, first order and Higuchi models. GO-CS-XG and κ-C loaded nanocarrier biocompatibility were determined by in vitro hemolysis and membrane stabilization studies. MCF-7 and U937 cancer cell lines were used to study the cytotoxicity of the nanocarrier by MTT assay, which indicates excellent cytocompatibility. These findings support the versatile use of a green renewable biocompatible GO-CS-XG nanocarrier as targeted drug delivery and potential anticancer agent for therapeutic purposes.
  11. Bera H, Nadimpalli J, Kumar S, Vengala P
    Int J Biol Macromol, 2017 Nov;104(Pt A):1229-1237.
    PMID: 28688948 DOI: 10.1016/j.ijbiomac.2017.07.027
    Flurbiprofen (FLU), a non-steroidal anti-inflammatory drug, exhibits limited clinical response due to its poor physicochemical properties. This study aimed at developing reliable drug carriers for intrgastric FLU delivery with a view to improve biopharmaceutical characteristics of drug and modulate its release in a controlled manner. In this context, FLU-loaded kondogogu gum (KG)-Zn(+2)-low methoxyl (LM) pectinate emulgel matrices reinforced with calcium silicate (CS) were accomplished by ionotropic gelation technique employing zinc acetate as cross-linker and characterized for their in vitro performances. All the formulations demonstrated excellent drug encapsulation efficiency (DEE, 46-87%) and sustained drug release behavior (Q7h, 70-91%). These quality attributes were remarkably influenced by polymer-blend (LM pectin:KG) ratios, low-density oil types and CS inclusion. The drug release profile of the FLU-loaded optimized matrices (F-7) was best fitted in Korsmeyer-Peppas model with Fickian diffusion driven mechanism. It also conferred excellent in vitro gastroretention capabilities. Moreover, the drug-excipient compatibility, alteration of crystallinity and thermal behavior of drug and surface morphology of matrices were evidenced with the results of FTIR, XRD, DSC and SEM analyses, respectively. Thus, the newly developed matrices are appropriate for sustained intragastric FLU delivery and simultaneous zinc supplementation for effective inflammation and arthritis management.
  12. Alim S, Kafi AKM, Jose R, Yusoff MM, Vejayan J
    Int J Biol Macromol, 2018 Jul 15;114:1071-1076.
    PMID: 29625222 DOI: 10.1016/j.ijbiomac.2018.03.184
    A novel third generation H2O2 biosensor is fabricated using multiporous SnO2 nanofiber/carbon nanotubes (CNTs) composite as a matrix for the immobilization of redox protein onto glassy carbon electrode. The multiporous nanofiber (MPNFs) of SnO2 is synthesized by electrospinning technique from the tin precursor. This nanofiber shows high surface area and good electrical conductivity. The SnO2 nanofiber/CNT composite increases the efficiency of biomolecule loading due to its high surface area. The morphology of the nanofiber has been evaluated by scanning electron microscopy (SEM). Cyclic Voltammetry and amperometry technique are employed to study and optimize the performance of the fabricated electrode. A direct electron transfer between the protein's redox centre and the glassy carbon electrode is established after fabrication of the electrode. The fabricated electrode shows excellent electrocatalytic reduction to H2O2. The catalysis currents increases linearly to the H2O2 concentration in a wide range of 1.0 10-6-1.4×10-4M and the lowest detection limit was 30nM (S/N=3). Moreover, the biosensor showed a rapid response to H2O2, a good stability and reproducibility.
  13. Bera H, Mothe S, Maiti S, Vanga S
    Int J Biol Macromol, 2018 Feb;107(Pt A):604-614.
    PMID: 28916379 DOI: 10.1016/j.ijbiomac.2017.09.027
    Novel carboxymethyl fenugreek galactomannan (CFG)-gellan gum (GG)-calcium silicate (CS) composite beads were developed for controlled glimepiride (GLI) delivery. CFG having degree of carboxymethylation of 0.71 was synthesized and characterized by FTIR, DSC and XRD analyses. Subsequently, GLI-loaded hybrids were accomplished by ionotropic gelation technique employing Ca+2/Zn+2/Al+3 ions as cross-linkers. All the formulations demonstrated excellent drug encapsulation efficiency (DEE, 48-97%) and sustained drug release behaviour (Q8h, 62-94%). These quality attributes were remarkably influenced by polymer-blend (GG:CFG) ratios, cross-linker types and CS inclusion. The drug release profile of the optimized formulation (F-6) was best fitted in zero-order model with anomalous diffusion driven mechanism. It also conferred excellent ex vivo mucoadhesive property and considerable hypoglycemic effect in streptozotocin-induced diabetic rats. Furthermore, the beads were characterized for drug-excipients compatibility, drug crystallinity, thermal behaviour and surface morphology. Thus, the developed hybrid matrices are appropriate for controlled delivery of GLI for Type 2 diabetes management.
  14. Ahmad N, Ahmad R, Alam MA, Ahmad FJ, Amir M, Pottoo FH, et al.
    Int J Biol Macromol, 2019 May 01;128:825-838.
    PMID: 30690115 DOI: 10.1016/j.ijbiomac.2019.01.142
    BACKGROUND: Daunorubicin hydrochloride (DAUN·HCl), due to low oral bioavailability poses the hindrance to be marketed as an oral formulation.

    AIM OF THE STUDY: To develop a natural biodegradable macromolecule i.e. Chitosan (CS)-coated-DAUN-PLGA-poly(lactic-co-glycolic acid)-Nanoparticles (NPs) with an aim to improve oral-DAUN bioavailability and to develop as well as validate UHPLC-MS/MS (ESI/Q-TOF) method for plasma quantification and pharmacokinetic analysis (PK) of DAUN.

    RESULTS: A particle size (198.3 ± 9.21 nm), drug content (47.06 ± 1.16 mg/mg) and zeta potential (11.3 ± 0.98 mV), consisting of smooth and spherical shape was observed for developed formulation. Cytotoxicity studies for CS-DAUN-PLGA-NPs revealed; a comparative superiority over free DAUN-S (i.v.) in human breast adenocarcinoma cell lines (MCF-7) and a higher permeability i.e. 3.89 folds across rat ileum, as compared to DAUN-PLGA-NPs (p 

  15. Jamila N, Khan N, Hwang IM, Saba M, Khan F, Amin F, et al.
    Int J Biol Macromol, 2020 Mar 15;147:853-866.
    PMID: 31739066 DOI: 10.1016/j.ijbiomac.2019.09.245
    Gums; composed of polysaccharides, carbohydrates, proteins, and minerals, are high molecular weight hydrophilic compounds with several biological applications. This study describes the nutritional and toxic elements content, chemical composition, synthesis of silver nanoparticles (G-AgNPs), and pharmacological and catalytic properties of Prunus armeniaca (apricot), Prunus domestica (plums), Prunus persica (peaches), Acacia modesta (phulai), Acacia arabica (kikar), and Salmalia malabarica (silk cotton tree) gums. The elemental contents were analyzed by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and ICP-mass spectrometry (ICP-MS). NMR spectroscopy was used for the identification of class of compounds in the mixture, their functional groups were determined through FTIR techniques, and plasmon resonance and size of G-AgNPs through UV-Vis spectroscopic technique and transmission electron microscopy (TEM). From the results, nutritional elements were present at appreciable concentrations, whereas toxic elements showed content below the maximum permissible ranges. Using the elemental data, linear discriminant and principal component analyses classified the gums to 99.9% variability index. Furthermore, G-AgNPs exhibited significant antioxidant, antibacterial, and redox catalytic potential. Hence, the subject G-AgNPs could have promising nutritional, therapeutic and environmental remediation applications.
  16. Rasib SZM, Ahmad Z, Khan A, Akil HM, Othman MBH, Hamid ZAA, et al.
    Int J Biol Macromol, 2018 Mar;108:367-375.
    PMID: 29222015 DOI: 10.1016/j.ijbiomac.2017.12.021
    In this study, chitosan-poly(methacrylic acid-co-N-isopropylacrylamide) [chitosan-p(MAA-co-NIPAM)] hydrogels were synthesized by emulsion polymerization. In order to be used as a carrier for drug delivery systems, the hydrogels had to be biocompatible, biodegradable and multi-responsive. The polymerization was performed by copolymerize MAA and NIPAM with chitosan polymer to produce a chitosan-based hydrogel. Due to instability during synthesis and complexity of components to produce the hydrogel, further study at different times of reaction is important to observe the synthesis process, the effect of end product on swelling behaviour and the most important is to find the best way to control the hydrogel synthesis in order to have an optimal swelling behaviour for drug release application. Studied by using Fourier transform infra-red (FTIR) spectroscopy found that, the synthesized was successfully produced stable chitosan-based hydrogel with PNIPAM continuously covered the outer surface of hydrogel which influenced much on the stability during synthesis. The chitosan and PMAA increased the zeta potential of the hydrogel and the chitosan capable to control shrinkage above human body temperature. The chitosan-p(MAA-co-NIPAM) hydrogels also responses to pH and temperature thus improved the ability to performance as a drug carrier.
  17. Parmin NA, Hashim U, Gopinath SCB, Nadzirah S, Rejali Z, Afzan A, et al.
    Int J Biol Macromol, 2019 Apr 01;126:877-890.
    PMID: 30597241 DOI: 10.1016/j.ijbiomac.2018.12.235
    Prognosis of early cancer detection becomes one of the tremendous issues in the medical health system. Medical debates among specialist doctor and researcher in therapeutic approaches became a hot concern for cervix cancer deficiencies early screening, risk factors cross-reaction, portability device, rapid and free labeling system. The electrical biosensing based system showed credibility in higher specificity and selectivity due to hybridization of DNA duplex between analyte target and DNA probes. Electrical DNA sensor for cervix cancer has attracted too many attentions to researcher notification based on high performance, easy to handle, rapid system and possible to miniaturize. This review explores the current progression and future insignificant for HPV E6 genobiosensing for early Detection Strategies of Cervical Cancer.
  18. Dass SA, Norazmi MN, Acosta A, Sarmiento ME, Tye GJ
    Int J Biol Macromol, 2020 Jul 15;155:305-314.
    PMID: 32240734 DOI: 10.1016/j.ijbiomac.2020.03.229
    T cell receptor (TCR)-like antibodies, obtained with the use of phage display technology, sandwich the best of the both arms of the adaptive immune system. In this study, in vitro selections against the latency associated Mycobacterium tuberculosis (Mtb) heat shock protein 16 kDa antigen (16 kDa) presented by HLA-A*011 and HLA-A*24 were carried out with the use of a human domain phage antibody library. TCR-like domain antibodies (A11Ab and A24Ab) were successfully generated recognizing 16 kDa epitopes presented by HLA-A*011 and HLA-A*24 molecules respectively. Both antibodies were found to be functional in soluble form and exhibited strong binding capacity against its targets. The results obtained support the future evaluation of these ligands for the development of diagnostic and therapeutic tools for tuberculosis infection.
  19. Rajisha KR, Maria HJ, Pothan LA, Ahmad Z, Thomas S
    Int J Biol Macromol, 2014 Jun;67:147-53.
    PMID: 24657376 DOI: 10.1016/j.ijbiomac.2014.03.013
    Potato starch nanocrystals were found to serve as an effective reinforcing agent for natural rubber (NR). Starch nanocrystals were obtained by the sulfuric acid hydrolysis of potato starch granules. After mixing the latex and the starch nanocrystals, the resulting aqueous suspension was cast into film by solvent evaporation method. The composite samples were successfully prepared by varying filler loadings, using a colloidal suspension of starch nanocrystals and NR latex. The morphology of the nanocomposite prepared was analyzed by field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). FESEM analysis revealed the size and shape of the crystal and their homogeneous dispersion in the composites. The crystallinity of the nanocomposites was studied using XRD analysis which indicated an overall increase in crystallinity with filler content. The mechanical properties of the nanocomposites such as stress-strain behavior, tensile strength, tensile modulus and elongation at break were measured according to ASTM standards. The tensile strength and modulus of the composites were found to improve tremendously with increasing nanocrystal content. This dramatic increase observed can be attributed to the formation of starch nanocrystal network. This network immobilizes the polymer chains leading to an increase in the modulus and other mechanical properties.
  20. Ghosal K, Das A, Das SK, Mahmood S, Ramadan MAM, Thomas S
    Int J Biol Macromol, 2019 Jun 01;130:645-654.
    PMID: 30797807 DOI: 10.1016/j.ijbiomac.2019.02.117
    This study aimed to develop and characterize the calcium alginate films loaded with diclofenac sodium and other hydrophilic polymers with different degrees of cross-linking obtained by external gelation process. To the formed films different physicochemical evaluation were performed which showed an initial character of the films. The films produced by this external gelation process were found thicker (0.031-0.038 mm) and stronger (51.9-52.9 MPa) but less elastic (2.3%) than those non-cross-linked films (0.029 mm; 39.7 MPa; 4.4%). The lower water vapor permeability (WVP) values of the films were obtained where maximum level of crosslinking occurs. Composite films can be cross-linked in presence of external crosslinking agent to improve the quality of the produced matrices for various uses. The characterization of the film was performed using Differential Scanning Calorimetry (DSC) and Fourier-Transform Infrared Spectroscopy (FT-IR) analysis. The Scanning Electron Microscopy (SEM) study showed the morphology of treated composite films. The kinetic release studies showed a sustained release of the drug from the formulated films as it can be prolonged in composite film. The prepared biodegradable Ca-Alginate bio-composite film may be of clinical importance for its therapeutic benefit.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links