Displaying publications 41 - 60 of 509 in total

Abstract:
Sort:
  1. Balqis N, Mohamed Jan B, Simon Cornelis Metselaar H, Sidek A, Kenanakis G, Ikram R
    Materials (Basel), 2023 May 14;16(10).
    PMID: 37241354 DOI: 10.3390/ma16103726
    It is no secret that graphene, a two-dimensional single-layered carbon atom crystal lattice, has drawn tremendous attention due to its distinct electronic, surface, mechanical, and optoelectronic properties. Graphene also has opened up new possibilities for future systems and devices due to its distinct structure and characteristics which has increased its demand in a variety of applications. However, scaling up graphene production is still a difficult, daunting, and challenging task. Although there is a vast body of literature reported on the synthesis of graphene through conventional and eco-friendly methods, viable processes for mass graphene production are still lacking. This review focuses on the variety of unwanted waste materials, such as biowastes, coal, and industrial wastes, for producing graphene and its potential derivatives. Among the synthetic routes, the main emphasis relies on microwave-assisted production of graphene derivatives. In addition, a detailed analysis of the characterization of graphene-based materials is presented. This paper also highlights the current advances and applications through the recycling of waste-derived graphene materials using microwave-assisted technology. In the end, it would alleviate the current challenges and forecast the specific direction of waste-derived graphene future prospects and developments.
  2. Kharboot LH, Fadil NA, Bakar TAA, Najib ASM, Nordin NH, Ghazali H
    Materials (Basel), 2023 Apr 04;16(7).
    PMID: 37049175 DOI: 10.3390/ma16072881
    Third-generation solar cells, including dye-sensitized solar cells (DSSCs) and quantum dot-sensitized solar cells (QDSSCs), have been associated with low-cost material requirements, simple fabrication processes, and mechanical robustness. Hence, counter electrodes (CEs) are a critical component for the functionality of these solar cells. Although platinum (Pt)-based CEs have been dominant in CE fabrication, they are costly and have limited market availability. Therefore, it is important to find alternative materials to overcome these issues. Transition metal chalcogenides (TMCs) and transition metal dichalcogenides (TMDs) have demonstrated capabilities as a more cost-effective alternative to Pt materials. This advantage has been attributed to their strong electrocatalytic activity, excellent thermal stability, tunability of bandgap energies, and variable crystalline morphologies. In this study, a comprehensive review of the major components and working principles of the DSSC and QDSSC are presented. In developing CEs for DSSCs and QDSSCs, various TMS materials synthesized through several techniques are thoroughly reviewed. The performance efficiencies of DSSCs and QDSSCs resulting from TMS-based CEs are subjected to in-depth comparative analysis with Pt-based CEs. Thus, the power conversion efficiency (PCE), fill factor (FF), short circuit current density (Jsc) and open circuit voltage (Voc) are investigated. Based on this review, the PCEs for DSSCs and QDSSCs are found to range from 5.37 to 9.80% (I-/I3- redox couple electrolyte) and 1.62 to 6.70% (S-2/Sx- electrolyte). This review seeks to navigate the future direction of TMS-based CEs towards the performance efficiency improvement of DSSCs and QDSSCs in the most cost-effective and environmentally friendly manner.
  3. Lam WS, Lam WH, Lee PF
    Materials (Basel), 2023 Apr 03;16(7).
    PMID: 37049151 DOI: 10.3390/ma16072857
    Chitosan is a biocompatible polymer with vast applications in pharmacology, medicine, paper making, agriculture, and the food industry due to its low toxicity. Chitosan also plays an important role in the sustainable environment since chitosan is able to absorb greenhouse gases, harmful organic matter, and heavy ions. Therefore, this paper conducts a bibliometric analysis of chitosan for sustainable development using the Scopus database from 1976 to 2023. A performance analysis on the 8002 documents was performed with Harzing's Publish or Perish. Science mapping was conducted using VOSviewer. The annual publication on chitosan for sustainable development showed an upward trend in recent years as the annual publication peaked in 2022 with 1178 documents with most of the documents being articles and published in journals. Material science, chemistry, and engineering are tightly related subject areas. China had the highest publication of 1560 total documents while the United States had the most impactful publication with 55,019 total citations, 68.77 citations per document, 77.6 citations per cited document, h-index 110, and g-index of 211. India had the largest international collaboration with 572 total link strength. "International Journal of Biological Macromolecules", "Carbohydrate Polymers", and "Polymers" have been identified as the top three source titles that publish the most documents on chitosan for sustainable development. The emerging trends in chitosan on sustainable development focus on the application of chitosan as an antibacterial agent and biosorbent for contaminants, especially in water treatment.
  4. Ma X, Tao S, Fu S, Yang H, Lin B, Lou Y, et al.
    Materials (Basel), 2023 Mar 31;16(7).
    PMID: 37049096 DOI: 10.3390/ma16072802
    Pyrethroids are common contaminants in water bodies. In this study, an efficient mussel shell-based adsorbent was prepared, the effects of factors (calcination temperature, calcination time, and sieved particle size) on the pyrethroid adsorption capacity from calcined shell powder were investigated via Box-Behnken design, and the prediction results of the model were verified. By characterizing (scanning electron microscopy, X-ray diffraction, Fourier infrared spectroscopy, and Brunauer-Emmett-Teller measurements) the adsorbent before and after the optimized preparation process, the results showed that calcined shell powder had a loose and porous structure, and the main component of the shell powder under optimized condition was calcium oxide. The adsorption mechanism was also investigated, and the analysis of adsorption data showed that the Langmuir, pseudo second-order, and intra-particle diffusion models were more suitable for describing the adsorption process. The adsorbent had good adsorption potential for pyrethroids, the adsorption capacity of the two pesticides was 1.05 and 1.79 mg/g, and the removal efficiency was over 40 and 70% at the maximum initial concentration, respectively.
  5. Syamsir A, Ean LW, Asyraf MRM, Supian ABM, Madenci E, Özkılıç YO, et al.
    Materials (Basel), 2023 Mar 30;16(7).
    PMID: 37049072 DOI: 10.3390/ma16072778
    Currently, pultruded glass fibre-reinforced polymer (pGFRP) composites have been extensively applied as cross-arm structures in latticed transmission towers. These materials were chosen for their high strength-to-weight ratio and lightweight characteristics. Nevertheless, several researchers have discovered that several existing composite cross arms can decline in performance, which leads to composite failure due to creep, torsional movement, buckling, moisture, significant temperature change, and other environmental factors. This leads to the composite structure experiencing a reduced service life. To resolve this problem, several researchers have proposed to implement composite cross arms with sleeve installation, an addition of bracing systems, and the inclusion of pGFRP composite beams with the core structure in order to have a sustainable composite structure. The aforementioned improvements in these composite structures provide superior performance under mechanical duress by having better stiffness, superiority in flexural behaviour, enhanced energy absorption, and improved load-carrying capacity. Even though there is a deficiency in the previous literature on this matter, several established works on the enhancement of composite cross-arm structures and beams have been applied. Thus, this review articles delivers on a state-of-the-art review on the design improvement and mechanical properties of composite cross-arm structures in experimental and computational simulation approaches.
  6. Amirrah IN, Zulkiflee I, Mohd Razip Wee MF, Masood A, Siow KS, Motta A, et al.
    Materials (Basel), 2023 Mar 29;16(7).
    PMID: 37049037 DOI: 10.3390/ma16072739
    Tissue engineering products have grown in popularity as a therapeutic approach for chronic wounds and burns. However, some drawbacks include additional steps and a lack of antibacterial capacities, both of which need to be addressed to treat wounds effectively. This study aimed to develop an acellular, ready-to-use ovine tendon collagen type I (OTC-I) bioscaffold with an antibacterial coating for the immediate treatment of skin wounds and to prevent infection post-implantation. Two types of crosslinkers, 0.1% genipin (GNP) and dehydrothermal treatment (DHT), were explored to optimise the material strength and biodegradability compared with a non-crosslinked (OTC) control. Carvone plasma polymerisation (ppCar) was conducted to deposit an antibacterial protective coating. Various parameters were performed to investigate the physicochemical properties, mechanical properties, microstructures, biodegradability, thermal stability, surface wettability, antibacterial activity and biocompatibility of the scaffolds on human skin cells between the different crosslinkers, with and without plasma polymerisation. GNP is a better crosslinker than DHT because it demonstrated better physicochemical properties (27.33 ± 5.69% vs. 43 ± 7.64% shrinkage), mechanical properties (0.15 ± 0.15 MPa vs. 0.07 ± 0.08 MPa), swelling (2453 ± 419.2% vs. 1535 ± 392.9%), biodegradation (0.06 ± 0.06 mg/h vs. 0.15 ± 0.16 mg/h), microstructure and biocompatibility. Similarly, its ppCar counterpart, GNPppCar, presents promising results as a biomaterial with enhanced antibacterial properties. Plasma-polymerised carvone on a crosslinked collagen scaffold could also support human skin cell proliferation and viability while preventing infection. Thus, GNPppCar has potential for the rapid treatment of healing wounds.
  7. Hassan A, Pedapati SR, Awang M, Soomro IA
    Materials (Basel), 2023 Mar 29;16(7).
    PMID: 37049016 DOI: 10.3390/ma16072723
    Additive manufacturing is a key component of the fourth industrial revolution (IR4.0) that has received increased attention over the last three decades. Metal additive manufacturing is broadly classified into two types: melting-based additive manufacturing and solid-state additive manufacturing. Friction stir additive manufacturing (FSAM) is a subset of solid-state additive manufacturing that produces big area multi-layered components through plate addition fashion using the friction stir welding (FSW) concept. Because of the solid-state process in nature, the part produced has equiaxed grain structure, which leads to better mechanical properties with less residual stresses and solidification defects when compared to existing melting-based additive manufacturing processes. The current review article intends to highlight the working principle and previous research conducted by various research groups using FSAM as an emerging material synthesizing technique. The summary of affecting process parameters and defects claimed for different research materials is discussed in detail based on open access experimental data. Mechanical properties such as microhardness and tensile strength, as well as microstructural properties such as grain refinement and morphology, are summarized in comparison to the base material. Furthermore, the viability and potential application of FSAM, as well as its current academic research status with technology readiness level and future recommendations are discussed meticulously.
  8. Raship NA, Tawil SNM, Nayan N, Ismail K
    Materials (Basel), 2023 Mar 16;16(6).
    PMID: 36984272 DOI: 10.3390/ma16062392
    Heterojunction structures of n-ZnO/p-Si were prepared through the growth of undoped ZnO and (Gd, Al) co-doped ZnO films onto p-type Si (1 0 0) substrates, using a co-sputtering method. The structural and optical properties of the Gd-doped ZnO films were studied as a function of different Al doping concentrations. The X-ray diffraction profiles indicated that the films had a nanocrystalline structure of ZnO with a (0 0 2) preferential orientation. An increase in the Al doping concentration deteriorated the (0 0 2) diffraction peak intensity. The transmittance measurements in the UV-Vis wavelength range indicated that the film's optical gap increased with increase in Al doping concentration. The heterojunction parameters were evaluated using the current-voltage (I-V) characterization carried out of the fabricated n-ZnO/p-Si heterostructure, in dark conditions at room temperature. From these measurements, the n-ZnO-based DMS/p-Si heterojunction diode with the use of (Gd, Al) co-doped ZnO film showed the lowest leakage current of 1.28 × 10-8 A and an ideality factor η of 1.11, close to the ideal diode behavior of η = 1, compared to the n-Gd-doped ZnO/p-Si and n-undoped ZnO/p-Si heterojunction diodes.
  9. Cahyanto A, Liemidia M, Karlina E, Zakaria MN, Shariff KA, Sukotjo C, et al.
    Materials (Basel), 2023 Mar 03;16(5).
    PMID: 36903186 DOI: 10.3390/ma16052071
    Carbonate apatite (CO3Ap) is a bioceramic material with excellent properties for bone and dentin regeneration. To enhance its mechanical strength and bioactivity, silica calcium phosphate composites (Si-CaP) and calcium hydroxide (Ca(OH)2) were added to CO3Ap cement. The aim of this study was to investigate the effect of Si-CaP and Ca(OH)2 on the mechanical properties in terms of the compressive strength and biological characteristics of CO3Ap cement, specifically the formation of an apatite layer and the exchange of Ca, P, and Si elements. Five groups were prepared by mixing CO3Ap powder consisting of dicalcium phosphate anhydrous and vaterite powder added by varying ratios of Si-CaP and Ca(OH)2 and 0.2 mol/L Na2HPO4 as a liquid. All groups underwent compressive strength testing, and the group with the highest strength was evaluated for bioactivity by soaking it in simulated body fluid (SBF) for one, seven, 14, and 21 days. The group that added 3% Si-CaP and 7% Ca(OH)2 had the highest compressive strength among the groups. SEM analysis revealed the formation of needle-like apatite crystals from the first day of SBF soaking, and EDS analysis indicated an increase in Ca, P, and Si elements. XRD and FTIR analyses confirmed the presence of apatite. This combination of additives improved the compressive strength and showed the good bioactivity performance of CO3Ap cement, making it a potential biomaterial for bone and dental engineering applications.
  10. Abdul Razak NE, Dee CF, Madhuku M, Ahmad I, Chang EY, Yu HW, et al.
    Materials (Basel), 2023 Mar 02;16(5).
    PMID: 36903185 DOI: 10.3390/ma16052070
    The super enhancement of silicon band edge luminescence when co-implanted with boron and carbon is reported. The role of boron in the band edge emissions in silicon was investigated by deliberately introducing defects into the lattice structures. We aimed to increase the light emission intensity from silicon by boron implantation, leading to the formation of dislocation loops between the lattice structures. The silicon samples were doped with a high concentration of carbon before boron implantation and then annealed at a high temperature to activate the dopants into substitutional lattice sites. Photoluminescence (PL) measurements were performed to observe the emissions at the near-infrared region. The temperatures were varied from 10 K to 100 K to study the effect of temperature on the peak luminescence intensity. Two main peaks could be seen at ~1112 and 1170 nm by observing the PL spectra. The intensities shown by both peaks in the samples incorporated with boron are significantly higher than those in pristine silicon samples, and the highest intensity in the former was 600 times greater than that in the latter. Transmission electron microscopy (TEM) was used to study the structure of post-implant and post-anneal silicon sample. The dislocation loops were observed in the sample. Through a technique compatible with mature silicon processing technology, the results of this study will greatly contribute to the development of all Si-based photonic systems and quantum technologies.
  11. Nasarudin NA, Razali M, Goh V, Chai WL, Muchtar A
    Materials (Basel), 2023 Mar 01;16(5).
    PMID: 36903142 DOI: 10.3390/ma16052027
    Over the years, advancement in ceramic-based dental restorative materials has led to the development of monolithic zirconia with increased translucency. The monolithic zirconia fabricated from nano-sized zirconia powders is shown to be superior in physical properties and more translucent for anterior dental restorations. Most in vitro studies on monolithic zirconia have focused mainly on the effect of surface treatment or the wear of the material, while the nanotoxicity of this material is yet to be explored. Hence, this research aimed to assess the biocompatibility of yttria-stabilized nanozirconia (3-YZP) on the three-dimensional oral mucosal models (3D-OMM). The 3D-OMMs were constructed using human gingival fibroblast (HGF) and immortalized human oral keratinocyte cell line (OKF6/TERT-2), co-cultured on an acellular dermal matrix. On day 12, the tissue models were exposed to 3-YZP (test) and inCoris TZI (IC) (reference material). The growth media were collected at 24 and 48 h of exposure to materials and assessed for IL-1β released. The 3D-OMMs were fixed with 10% formalin for the histopathological assessments. The concentration of the IL-1β was not statistically different between the two materials for 24 and 48 h of exposure (p = 0.892). Histologically, stratification of epithelial cells was formed without evidence of cytotoxic damage and the epithelial thickness measured was the same for all model tissues. The excellent biocompatibility of nanozirconia, as evidenced by the multiple endpoint analyses of the 3D-OMM, may indicate the potential of its clinical application as a restorative material.
  12. Mohammed AA, Nahazanan H, Nasir NAM, Huseien GF, Saad AH
    Materials (Basel), 2023 Feb 28;16(5).
    PMID: 36903132 DOI: 10.3390/ma16052020
    Calcium-based binders, such as ordinary Portland cement (OPC) and lime (CaO), are the most common artificial cementitious materials used worldwide for concrete and soil improvement. However, using cement and lime has become one of the main concerns for engineers because they negatively affect the environment and economy, prompting research into alternative materials. The energy consumption involved in producing cementitious materials is high, and the subsequent CO2 emissions account for 8% of the total CO2 emissions. In recent years, an investigation into cement concrete's sustainable and low-carbon characteristics has become the industry's focus, achieved by using supplementary cementitious materials. This paper aims to review the problems and challenges encountered when using cement and lime. Calcined clay (natural pozzolana) has been used as a possible supplement or partial substitute to produce low-carbon cement or lime from 2012-2022. These materials can improve the concrete mixture's performance, durability, and sustainability. Calcined clay has been utilized widely in concrete mixtures because it produces a low-carbon cement-based material. Owing to the large amount of calcined clay used, the clinker content of cement can be lowered by as much as 50% compared with traditional OPC. It helps conserve the limestone resources used in cement manufacture and helps reduce the carbon footprint associated with the cement industry. Its application is gradually growing in places such as Latin America and South Asia.
  13. Amirzade-Iranaq MT, Omidi M, Bakhsheshi-Rad HR, Saberi A, Abazari S, Teymouri N, et al.
    Materials (Basel), 2023 Feb 25;16(5).
    PMID: 36903033 DOI: 10.3390/ma16051919
    This study attempts to synthesize MgZn/TiO2-MWCNTs composites with varying TiO2-MWCNT concentrations using mechanical alloying and a semi-powder metallurgy process coupled with spark plasma sintering. It also aims to investigate the mechanical, corrosion, and antibacterial properties of these composites. When compared to the MgZn composite, the microhardness and compressive strength of the MgZn/TiO2-MWCNTs composites were enhanced to 79 HV and 269 MPa, respectively. The results of cell culture and viability experiments revealed that incorporating TiO2-MWCNTs increased osteoblast proliferation and attachment and enhanced the biocompatibility of the TiO2-MWCNTs nanocomposite. It was observed that the corrosion resistance of the Mg-based composite was improved and the corrosion rate was reduced to about 2.1 mm/y with the addition of 10 wt% TiO2-1 wt% MWCNTs. In vitro testing for up to 14 days revealed a reduced degradation rate following the incorporation of TiO2-MWCNTs reinforcement into a MgZn matrix alloy. Antibacterial evaluations revealed that the composite had antibacterial activity, with an inhibition zone of 3.7 mm against Staphylococcus aureus. The MgZn/TiO2-MWCNTs composite structure has great potential for use in orthopedic fracture fixation devices.
  14. Hashim AN, Salleh MAAM, Ramli MM, Abdullah MMAB, Sandu AV, Vizureanu P, et al.
    Materials (Basel), 2023 Feb 24;16(5).
    PMID: 36902968 DOI: 10.3390/ma16051852
    This paper presents an assessment of the effect of isothermal annealing of Sn whisker growth behavior on the surface of Sn0.7Cu0.05Ni solder joints using the hot-dip soldering technique. Sn0.7Cu and Sn0.7Cu0.05Ni solder joints with a similar solder coating thickness was aged up to 600 h in room temperature and annealed under 50 °C and 105 °C conditions. Through the observations, the significant outcome was the suppressing effect of Sn0.7Cu0.05Ni on Sn whisker growth in terms of density and length reduction. The fast atomic diffusion of isothermal annealing consequently reduced the stress gradient of Sn whisker growth on the Sn0.7Cu0.05Ni solder joint. It was also established that the smaller (Cu,Ni)6Sn5 grain size and stability characteristic of hexagonal η-Cu6Sn5 considerably contribute to the residual stress diminished in the (Cu,Ni)6Sn5 IMC interfacial layer and are able to suppress the growth of Sn whiskers on the Sn0.7Cu0.05Ni solder joint. The findings of this study provide environmental acceptance with the aim of suppressing Sn whisker growth and upsurging the reliability of the Sn0.7Cu0.05Ni solder joint at the electronic-device-operation temperature.
  15. Zaidi SAS, Kwan CE, Mohan D, Harun S, Luthfi AAI, Sajab MS
    Materials (Basel), 2023 Feb 22;16(5).
    PMID: 36902909 DOI: 10.3390/ma16051793
    As additive manufacturing continues to evolve, there is ongoing discussion about ways to improve the layer-by-layer printing process and increase the mechanical strength of printed objects compared to those produced by traditional techniques such as injection molding. To achieve this, researchers are exploring ways of enhancing the interaction between the matrix and filler by introducing lignin in the 3D printing filament processing. In this work, research has been conducted on using biodegradable fillers of organosolv lignin, as a reinforcement for the filament layers in order to enhance interlayer adhesion by using a bench-top filament extruder. Briefly, it was found that organosolv lignin fillers have the potential to improve the properties of polylactic acid (PLA) filament for fused deposition modeling (FDM) 3D printing. By incorporating different formulations of lignin with PLA, it was found that using 3 to 5% lignin in the filament leads to an improvement in the Young's modulus and interlayer adhesion in 3D printing. However, an increment of up to 10% also results in a decrease in the composite tensile strength due to the lack of bonding between the lignin and PLA and the limited mixing capability of the small extruder.
  16. Asyraf MRM, Rafidah M, Madenci E, Özkılıç YO, Aksoylu C, Razman MR, et al.
    Materials (Basel), 2023 Feb 20;16(4).
    PMID: 36837376 DOI: 10.3390/ma16041747
    Fibre-reinforced polymer (FRP) composites have been selected as an alternative to conventional wooden timber cross arms. The advantages of FRP composites include a high strength-to-weight ratio, lightweight, ease of production, as well as optimal mechanical performance. Since a non-conductive cross arm structure is exposed to constant loading for a very long time, creep is one of the main factors that cause structural failure. In this state, the structure experiences creep deformation, which can result in serviceability problems, stress redistribution, pre-stress loss, and the failure of structural elements. These issues can be resolved by assessing the creep trends and properties of the structure, which can forecast its serviceability and long-term mechanical performance. Hence, the principles, approaches, and characteristics of creep are used to comprehend and analyse the behaviour of wood and composite cantilever structures under long-term loads. The development of appropriate creep methods and approaches to non-conductive cross arm construction is given particular attention in this literature review, including suitable mitigation strategies such as sleeve installation, the addition of bracing systems, and the inclusion of cross arm beams in the core structure. Thus, this article delivers a state-of-the-art review of creep properties, as well as an analysis of non-conductive cross arm structures using experimental approaches. Additionally, this review highlights future developments and progress in cross arm studies.
  17. Hasan MM, Islam MT, Rahim SKA, Alam T, Rmili H, Alzamil A, et al.
    Materials (Basel), 2023 Feb 20;16(4).
    PMID: 36837381 DOI: 10.3390/ma16041751
    This article demonstrates a compact wideband four-port multiple-input-multiple-output (MIMO) antenna system integrated with a wideband metamaterial (MM) to reach high gain for sub-6 GHz new radio (NR) 5G communication. The four antennas of the proposed MIMO system are orthogonally positioned to the adjacent antennas with a short interelement edge-to-edge distance (0.19λmin at 3.25 GHz), confirming compact size and wideband characteristics 55.2% (3.25-5.6 GHz). Each MIMO system component consists of a fractal slotted unique patch with a transmission feed line and a metal post-encased defected ground structure (DGS). The designed MIMO system is realized on a low-cost FR-4 printed material with a miniature size of 0.65λmin × 0.65λmin × 0.02λmin. A 6 × 6 array of double U-shaped resonator-based unique mu-near-zero (MNZ) wideband metamaterial reflector (MMR) is employed below the MIMO antenna with a 0.14λmin air gap, improving the gain by 2.8 dBi and manipulating the MIMO beam direction by 60°. The designed petite MIMO system with a MM reflector proposes a high peak gain of 7.1 dBi in comparison to recent relevant antennas with high isolation of 35 dB in the n77/n78/n79 bands. In addition, the proposed wideband MMR improves the MIMO diversity and radiation characteristics with an average total efficiency of 68% over the desired bands. The stated MIMO antenna system has an outstanding envelope correlation coefficient (ECC) of <0.045, a greater diversity gain (DG) of near 10 dB (>9.96 dB), a low channel capacity loss (CCL) of <0.35 b/s/Hz and excellent multiplexing efficiency (ME) of higher than -1.4 dB. The proposed MIMO concept is confirmed by fabricating and testing the developed MIMO structure. In contrast to the recent relevant works, the proposed antenna is compact in size, while maintaining high gain and wideband characteristics, with strong MIMO performance. Thus, the proposed concept could be a potential approach to the 5G MIMO antenna system.
  18. Yin ATM, Rahim SZA, Al Bakri Abdullah MM, Nabialek M, Abdellah AE, Rennie A, et al.
    Materials (Basel), 2023 Feb 19;16(4).
    PMID: 36837352 DOI: 10.3390/ma16041724
    The investigation of mould inserts in the injection moulding process using metal epoxy composite (MEC) with pure metal filler particles is gaining popularity among researchers. Therefore, to attain zero emissions, the idea of recycling metal waste from industries and workshops must be investigated (waste free) because metal recycling conserves natural resources while requiring less energy to manufacture new products than virgin raw materials would. The utilisation of metal scrap for rapid tooling (RT) in the injection moulding industry is a fascinating and potentially viable approach. On the other hand, epoxy that can endure high temperatures (>220 °C) is challenging to find and expensive. Meanwhile, industrial scrap from coal-fired power plants can be a precursor to creating geopolymer materials with desired physical and mechanical qualities for RT applications. One intriguing attribute of geopolymer is its ability to endure temperatures up to 1000 °C. Nonetheless, geopolymer has a higher compressive strength of 60-80 MPa (8700-11,600 psi) than epoxy (68.95 MPa) (10,000 psi). Aside from its low cost, geopolymer offers superior resilience to harsh environments and high compressive and flexural strength. This research aims to investigate the possibility of generating a new sustainable material by integrating several types of metals in green geopolymer metal composite (GGMC) mould inserts for RT in the injection moulding process. It is necessary to examine and investigate the optimal formulation of GGMC as mould inserts for RT in the injection moulding process. With less expensive and more ecologically friendly components, the GGMC is expected to be a superior choice as a mould insert for RT. This research substantially impacts environmental preservation, cost reduction, and maintaining and sustaining the metal waste management system. As a result of the lower cost of recycled metals, sectors such as mould-making and machining will profit the most.
  19. Kassim N, Rahim SZA, Ibrahim WARAW, Shuaib NA, Rahim IA, Karim NA, et al.
    Materials (Basel), 2023 Feb 19;16(4).
    PMID: 36837353 DOI: 10.3390/ma16041723
    A molded expanded polystyrene (EPS) cushion is a flexible, closed-cell foam that can be molded to fit any packing application and is effective at absorbing shock. However, the packaging waste of EPS cushions causes pollution to landfills and the environment. Despite being known to cause pollution, this sustainable packaging actually has the potential to reduce this environmental pollution because of its reusability. Therefore, the objective of this study is to identify the accurate design parameter that can be emphasized in producing a sustainable design of EPS cushion packaging. An experimental method of drop testing and design simulation analysis was conducted. The effectiveness of the design parameters was also verified. Based on the results, there are four main elements that necessitate careful consideration: rib positioning, EPS cushion thickness, package layout, and packing size. These parameter findings make a significant contribution to sustainable design, where these elements were integrated directly to reduce and reuse packaging material. Thus, it has been concluded that 48 percent of the development cost of the cushion was decreased, 25 percent of mold modification time was significantly saved, and 27 percent of carbon dioxide (CO2) reduction was identified. The findings also aided in the development of productive packaging design, in which these design elements were beneficial to reduce environmental impact. These findings had a significant impact on the manufacturing industry in terms of the economics and time of the molded expanded polystyrene packaging development.
  20. Jahan MI, Faruque MRI, Hossain MB, Abdullah S
    Materials (Basel), 2023 Feb 15;16(4).
    PMID: 36837252 DOI: 10.3390/ma16041623
    We created an ultra-thin, triple-band incident angle-insensitive perfect metamaterial absorber (MMA) with a metallic patch and a continuous metal ground isolated by a central dielectric substrate. The top metallic patch, placed across the edges of the 0.58 mm thickness Rogers RO4003C (lossy) substrate, forms the bulk of the projected absorber's ultra-thin layer. Nonetheless, absorption is exceedingly strong, covering C-band, X-band and K-band and reaching levels of 97.8%, 99.9%, and 99.9%, respectively, under normal and even oblique (0° to 45°) incident conditions. In chosen ranges of frequency of 6.24, 10.608, and 18.624 GHz for both TM and TE mode, the displayed Q-factors were 62.4, 17.68, and 26.61, respectively. We correspondingly calculated the RAB (relative absorption bandwidth) to evaluate absorption performance. An equivalent circuit proved its performance capabilities, indicating that it would produce a high-quality MMA from ADS software. Furthermore, the absorber's performance has been verified in free space on a sample being tested using a different array of unit cells. Moreover, the proposed structures with HFSS simulators to display the MMA's absolute absorption at each absorption peak are somewhat inconsistent with the results of the CST simulator. Because of its superior performance, the ultra-thin absorber is suited for a wide range of applications, including satellite applications such as radar systems, stealth technology, imaging, and electromagnetic interference reduction.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links