Displaying publications 41 - 60 of 90 in total

Abstract:
Sort:
  1. Tan DS, Smith CE, McMahon DA, Bowen ET
    Nature, 1967 Jun 10;214(5093):1154-5.
    PMID: 4964058
  2. WHARTON RH
    Nature, 1951 May 26;167(4256):854-5.
    PMID: 14833440
  3. Dalu MTB, Dalu T, Wasserman RJ
    Nature, 2017 07 19;547(7662):281.
    PMID: 28726820 DOI: 10.1038/547281c
  4. Usinowicz J, Chang-Yang CH, Chen YY, Clark JS, Fletcher C, Garwood NC, et al.
    Nature, 2017 10 05;550(7674):105-108.
    PMID: 28953870 DOI: 10.1038/nature24038
    The tropical forests of Borneo and Amazonia may each contain more tree species diversity in half a square kilometre than do all the temperate forests of Europe, North America, and Asia combined. Biologists have long been fascinated by this disparity, using it to investigate potential drivers of biodiversity. Latitudinal variation in many of these drivers is expected to create geographic differences in ecological and evolutionary processes, and evidence increasingly shows that tropical ecosystems have higher rates of diversification, clade origination, and clade dispersal. However, there is currently no evidence to link gradients in ecological processes within communities at a local scale directly to the geographic gradient in biodiversity. Here, we show geographic variation in the storage effect, an ecological mechanism that reduces the potential for competitive exclusion more strongly in the tropics than it does in temperate and boreal zones, decreasing the ratio of interspecific-to-intraspecific competition by 0.25% for each degree of latitude that an ecosystem is located closer to the Equator. Additionally, we find evidence that latitudinal variation in climate underpins these differences; longer growing seasons in the tropics reduce constraints on the seasonal timing of reproduction, permitting lower recruitment synchrony between species and thereby enhancing niche partitioning through the storage effect. Our results demonstrate that the strength of the storage effect, and therefore its impact on diversity within communities, varies latitudinally in association with climate. This finding highlights the importance of biotic interactions in shaping geographic diversity patterns, and emphasizes the need to understand the mechanisms underpinning ecological processes in greater detail than has previously been appreciated.
  5. Michailidou K, Lindström S, Dennis J, Beesley J, Hui S, Kar S, et al.
    Nature, 2017 11 02;551(7678):92-94.
    PMID: 29059683 DOI: 10.1038/nature24284
    Breast cancer risk is influenced by rare coding variants in susceptibility genes, such as BRCA1, and many common, mostly non-coding variants. However, much of the genetic contribution to breast cancer risk remains unknown. Here we report the results of a genome-wide association study of breast cancer in 122,977 cases and 105,974 controls of European ancestry and 14,068 cases and 13,104 controls of East Asian ancestry. We identified 65 new loci that are associated with overall breast cancer risk at P 
  6. Grill G, Lehner B, Thieme M, Geenen B, Tickner D, Antonelli F, et al.
    Nature, 2019 Aug;572(7768):E9.
    PMID: 31337922 DOI: 10.1038/s41586-019-1379-9
    An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
  7. Cyranoski D, Law YH, Ong S, Phillips N, Zastrow M
    Nature, 2018 06;558(7711):502-510.
    PMID: 29950631 DOI: 10.1038/d41586-018-05506-1
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links