Displaying publications 41 - 55 of 55 in total

Abstract:
Sort:
  1. Siddiqui R, Kulsoom H, Lalani S, Khan NA
    Exp Parasitol, 2016 Jul;166:94-6.
    PMID: 27055361 DOI: 10.1016/j.exppara.2016.04.001
    Balamuthia mandrillaris is a protist pathogen that can cause encephalitis with a mortality rate of more than 95%. Early diagnosis followed by aggressive treatment is a pre-requisite for successful prognosis. Current methods for identifying this organism rely on culture and microscopy, antibody-based methods using animals, or involve the use of molecular tools that are expensive. Here, we describe the isolation of antibody fragments that can be used for the unequivocal identification of B. mandrillaris. B. mandrillaris-specific antibody fragments were isolated from a bacteriophage antibody display library. Individual clones were studied by enzyme-linked immunosorbent assay, and immunofluorescence. Four antibody clones showed specific binding to B. mandrillaris. The usefulness of phage antibody display technology as a diagnostic tool for isolating antibody fragments against B. mandrillaris antigens and studying their biological role(s) is discussed further.
    Matched MeSH terms: Amebiasis/diagnosis*; Amebiasis/parasitology
  2. Siddiqui R, Saleem S, Khan NA
    Exp Parasitol, 2016 Jun 18;168:16-24.
    PMID: 27327524 DOI: 10.1016/j.exppara.2016.06.006
    The treatment of Acanthamoeba infections remains problematic, suggesting that new targets and/or chemotherapeutic agents are needed. Bioassay-guided screening of drugs that are clinically-approved for non-communicable diseases against opportunistic eukaryotic pathogens is a viable strategy. With known targets and mode of action, such drugs can advance to clinical trials at a faster pace. Recently Bortezomib (proteasome inhibitor) has been approved by FDA in the treatment of multiple myeloma. As proteasomal pathways are well known regulators of a variety of eukaryotic cellular functions, the overall aim of the present study was to study the effects of peptidic and non-peptidic proteasome inhibitors on the biology and pathogenesis of Acanthamoeba castellanii of the T4 genotype, in vitro. Zymographic assays revealed that inhibition of proteasome had detrimental effects on the extracellular proteolytic activities of A. castellanii. Proteasome inhibition affected A. castellanii growth (using amoebistatic assays), but not viability of A. castellanii. Importantly, proteasome inhibitors affected encystation as determined by trophozoite transformation into the cyst form, as well as excystation, as determined by cyst transformation into the trophozoite form. The ability of proteasome inhibitor to block Acanthamoeba differentiation is significant, as it presents a major challenge in the successful treatment of Acanthamoeba infection. As these drugs are used clinically against non-communicable diseases, the findings reported here have the potential to be tested in a clinical setting against amoebic infections.
    Matched MeSH terms: Amebiasis
  3. Lorenzo-Morales J, Sifaoui I, Reyes-Batlle M, Lares-Villa F, Lares-Jiménez LF, Omaña-Molina M, et al.
    Exp Parasitol, 2019 May;200:36.
    PMID: 30902622 DOI: 10.1016/j.exppara.2019.03.010
    Matched MeSH terms: Amebiasis/parasitology*
  4. Yap FB, Lee BR
    Arch Dermatol, 2011 Jun;147(6):735-40.
    PMID: 21690541 DOI: 10.1001/archdermatol.2011.128-a
    Matched MeSH terms: Amebiasis/diagnosis*; Amebiasis/drug therapy; Amebiasis/pathology
  5. Anwar A, Siddiqui R, Shah MR, Khan NA
    PMID: 29967024 DOI: 10.1128/AAC.00630-18
    trans-Cinnamic acid (CA) is a natural organic compound. Using amoebicidal assays, for the first time we showed that CA affected the viability of the protist pathogen Acanthamoeba castellanii Conjugation with gold nanoparticles (AuNPs) enhanced the antiamoebic effects of CA. CA-coated AuNPs (CA-AuNPs) also exhibited significant excystation and encystation activity, compared to CA and AuNPs alone. Pretreatment of amoebae with CA-AuNPs inhibited A. castellanii-mediated host cell cytotoxicity. Moreover, CA-AuNPs exhibited potent effects against methicillin-resistant Staphylococcus aureus and neuropathogenic Escherichia coli K1 and protected host cells against bacteria-mediated host cell death.
    Matched MeSH terms: Amebiasis/drug therapy; Amebiasis/parasitology
  6. Iqbal K, Abdalla SAO, Anwar A, Iqbal KM, Shah MR, Anwar A, et al.
    Antibiotics (Basel), 2020 May 25;9(5).
    PMID: 32466210 DOI: 10.3390/antibiotics9050276
    The pathogenic free-living amoeba, Acanthamoeba castellanii, is responsible for a rare but deadly central nervous system infection, granulomatous amoebic encephalitis and a blinding eye disease called Acanthamoeba keratitis. Currently, a combination of biguanides, amidine, azoles and antibiotics are used to manage these infections; however, the host cell cytotoxicity of these drugs remains a challenge. Furthermore, Acanthamoeba species are capable of transforming to the cyst form to resist chemotherapy. Herein, we have developed a nano drug delivery system based on iron oxide nanoparticles conjugated with isoniazid, which were further loaded with amphotericin B (ISO-NPs-AMP) to cause potent antiamoebic effects against Acanthamoeba castellanii. The IC50 of isoniazid conjugated with magnetic nanoparticles and loaded with amphotericin B was found to be 45 μg/mL against Acanthamoeba castellanii trophozoites and 50 μg/mL against cysts. The results obtained in this study have promising implications in drug discovery as these nanomaterials exhibited high trophicidal and cysticidal effects, as well as limited cytotoxicity against rat and human cells.
    Matched MeSH terms: Amebiasis
  7. Thomas V, Sinniah B
    Ann Trop Med Parasitol, 1982 Apr;76(2):147-51.
    PMID: 6284074
    Matched MeSH terms: Amebiasis/epidemiology*
  8. O'Holohan DR, Hugoe-Matthews J
    Ann Trop Med Parasitol, 1972 Jun;66(2):181-6.
    PMID: 4338870
    Matched MeSH terms: Amebiasis/drug therapy*
  9. O'Holohan DR, Hugoe-Mathews J
    Ann Trop Med Parasitol, 1970 Dec;64(4):475-9.
    PMID: 5276552
    Matched MeSH terms: Amebiasis/drug therapy*
  10. Basher MHA, Ithoi I, Mahmud R, Abdulsalam AM, Foead AI, Dawaki S, et al.
    Acta Trop, 2018 Feb;178:219-228.
    PMID: 29203378 DOI: 10.1016/j.actatropica.2017.11.015
    Acanthamoeba species are ubiquitous free-living protozoa that can be found worldwide. Occasionally, it can become parasitic and the causative agent of acanthamoebic keratitis (AK) and Granulomatous Amoebic Encephalitis (GAE) in man. A total of 160 environmental samples and 225 naturally-infected animal corneal swabs were collected for Acanthamoeba cultivation. Acanthamoeba was found to be high in samples collected from environments (85%, 136/160) compared to infected animal corneas (24.89%, 56/225) by microscopic examination. Analysis of nucleotide sequence of 18S rRNA gene of all the 192 cultivable Acanthamoeba isolates revealed 4 genotypes (T3, T4. T5 and T15) with T4 as the most prevalent (69.27%, 133/192) followed by T5 (20.31%), T15 (9.90%) and T3 (0.52%). Genotype T4 was from the strain of A. castellanii U07401 (44.27%), A. castellanii U07409 (20.83%) and A. polyphagaAY026243 (4.17%), but interestingly, only A. castellanii U07401 was detected in naturally infected corneal samples. In environmental samples, T4 was commonly detected in all samples including dry soil, dust, wet debris, wet soil and water. Among the T4, A. castellanii (U07409) strains were detected high occurrence in dry (45%) followed by aquatic (32.50%) and moist (22.50%) samples but however A. castellanii (U07401) strains were dominant in dry samples of soil and dust (93.10%). Subsequently, genotype T5 of A. lenticulata (U94741) strains were dominant in samples collected from aquatic environments (58.97%). In summary, A. castellanii (U07401) strains were found dominant in both environmental and corneal swab samples. Therefore, these strains are possibly the most virulent and dry soil or dusts are the most possible source of Acanthamoeba infection in cats and dogs corneas.
    Matched MeSH terms: Amebiasis
  11. Anwar A, Ting ELS, Anwar A, Ain NU, Faizi S, Shah MR, et al.
    AMB Express, 2020 Feb 03;10(1):24.
    PMID: 32016777 DOI: 10.1186/s13568-020-0960-9
    Acanthamoeba spp. are the causative agent of Acanthamoeba keratitis and granulomatous amoebic encephalitis (GAE). The current options to treat Acanthamoeba infections have limited success. Silver nanoparticles show antimicrobial effects and enhance the efficacy of their payload at the specific biological targets. Natural folk plants have been widely used for treating diseases as the phytochemicals from several plants have been shown to exhibit amoebicidal effects. Herein, we used natural products of plant or commercial sources including quercetin (QT), kolavenic acid (PGEA) isolated from plant extracts of Polyalthia longifolia var pendula and crude plant methanolic extract of Caesalpinia pulcherrima (CPFLM) as antiacanthamoebic agents. Furthermore, these plant-based materials were conjugated with silver nanoparticles (AgNPs) to determine the effects of the natural compounds and their nanoconjugates against a clinical isolate of A. castellanii from a keratitis patient (ATCC 50492) belonging to the T4 genotype. The compounds were conjugated with AgNPs and characterized by using ultraviolet visible spectrophotometry and atomic force microscopy. Quercetin coated silver nanoparticles (QT-AgNPs) showed characteristic surface plasmon resonance band at 443 nm and the average size distribution was found to be around 45 nm. The natural compounds alone and their nanoconjugates were tested for the viability of amoebae, encystation and excystation activity against A. castellanii. The natural compounds showed significant growth inhibition of A. castellanii while QT-AgNPs specifically exhibited enhanced antiamoebic effects as well as interrupted the encystation and excystation activity of the amoebae. Interestingly, these compounds and nanoconjugates did not exhibit in vitro cytotoxic effects against human cells. Plant-based compounds and extracts could be an interesting strategy in development of alternative therapeutics against Acanthamoeba infections.
    Matched MeSH terms: Amebiasis
  12. Abdelnasir S, Anwar A, Kawish M, Anwar A, Shah MR, Siddiqui R, et al.
    AMB Express, 2020 Jul 17;10(1):127.
    PMID: 32681358 DOI: 10.1186/s13568-020-01061-z
    Acanthamoeba castellanii can cause granulomatous amoebic encephalitis and Acanthamoeba keratitis. Currently, no single drug has been developed to effectively treat infections caused by Acanthamoeba. Recent studies have shown that drugs conjugated with nanoparticles exhibit potent in vitro antiamoebic activity against pathogenic free-living amoebae. In this study, we have developed a nano drug delivery system based on iron oxide nanoparticles conjugated with metronidazole which were further loaded with amphotericin B to produce enhanced antiamoebic effects against Acanthamoeba castellanii. The results showed that metronidazole-nanoparticles-amphotericin B (Met-MNPs-Amp) significantly inhibited the viability of these amoebae as compared to the respective controls including drugs and nanoparticles alone. Met-MNPs-Amp exhibited IC50 at 50 μg/mL against both A. castellanii trophozoites and cysts. Furthermore, these nanoparticles did not affect the viability of rat and human cells and showed safe hemolytic activity. Hence, the results obtained in this study have potential utility in drug development against infections caused by Acanthamoeba castellanii. A combination of drugs can lead to successful prognosis against these largely neglected infections. Future studies will determine the value of conjugating molecules with diagnostic and therapeutic potential to provide theranostic approaches against these serious infections.
    Matched MeSH terms: Amebiasis
  13. Mungroo MR, Anwar A, Khan NA, Siddiqui R
    ACS Omega, 2020 Jun 02;5(21):12467-12475.
    PMID: 32548431 DOI: 10.1021/acsomega.0c01305
    Balamuthia mandrillaris and Naegleria fowleri are free-living amoebae that cause infection of the central nervous system, granulomatous amoebic encephalitis (GAE) and primary amoebic meningoencephalitis (PAM), respectively. The fact that mortality rates for cases of GAE and PAM are more than 95% indicates the need for new therapeutic agents against those amoebae. Considering that curcumin exhibits a wide range of biological properties and has shown efficacy against Acanthamoeba castellanii, we evaluated the amoebicidal properties of curcumin against N. fowleri and B. mandrillaris. Curcumin showed significant amoebicidal activities with an AC50 of 172 and 74 μM against B. mandrillaris and N. fowleri, respectively. Moreover, these compounds were also conjugated with gold nanoparticles to further increase their amoebicidal activities. After conjugation with gold nanoparticles, amoebicidal activities of the drugs were increased by up to 56 and 37% against B. mandrillaris and N. fowleri, respectively. These findings are remarkable and suggest that clinically available curcumin and our gold-conjugated curcumin nanoparticles hold promise in the improved treatment of fatal infections caused by brain-eating amoebae and should serve as a model in the rationale development of therapeutic interventions against other infections.
    Matched MeSH terms: Amebiasis
  14. Anwar A, Siddiqui R, Khan NA
    ACS Chem Neurosci, 2019 01 16;10(1):6-12.
    PMID: 30149693 DOI: 10.1021/acschemneuro.8b00321
    Pathogenic free-living amoebae including Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri cause infections of the central nervous system (CNS), which almost always prove fatal. The mortality rate is high with the CNS infections caused by these microbes despite modern developments in healthcare and antimicrobial chemotherapy. The low awareness, delayed diagnosis, and lack of effective drugs are major hurdles to overcome these challenges. Nanomaterials have emerged as vital tools for concurrent diagnosis and therapy, which are commonly referred to as theranostics. Nanomaterials offer highly sensitive diagnostic systems and viable therapeutic effects as a single modality. There has been good progress to develop nanomaterials based efficient theranostic systems against numerous kinds of tumors, but this field is yet immature in the context of infectious diseases, particularly parasitic infections. Herein, we describe the potential value of theranostic applications of nanomaterials against brain infections due to pathogenic amoebae.
    Matched MeSH terms: Amebiasis/diagnosis; Amebiasis/therapy*
  15. Mungroo MR, Shahbaz MS, Anwar A, Saad SM, Khan KM, Khan NA, et al.
    ACS Chem Neurosci, 2020 08 19;11(16):2438-2449.
    PMID: 31961126 DOI: 10.1021/acschemneuro.9b00596
    Naegleria fowleri and Balamuthia mandrillaris are protist pathogens that infect the central nervous system, causing primary amoebic meningoencephalitis and granulomatous amoebic encephalitis with mortality rates of over 95%. Quinazolinones and their derivatives possess a wide spectrum of biological properties, but their antiamoebic effects against brain-eating amoebae have never been tested before. In this study, we synthesized a variety of 34 novel arylquinazolinones derivatives (Q1-Q34) by altering both quinazolinone core and aryl substituents. To study the antiamoebic activity of these synthetic arylquinazolinones, amoebicidal and amoebistatic assays were performed against N. fowleri and B. mandrillaris. Moreover, amoebae-mediated host cells cytotopathogenicity and cytotoxicity assays were performed against human keratinocytes cells in vitro. The results revealed that selected arylquinazolinones derivatives decreased the viability of B. mandrillaris and N. fowleri significantly (P < 0.05) and reduced cytopathogenicity of both parasites. Furthermore, these compounds were also found to be least cytotoxic against HaCat cells. Considering that nanoparticle-based materials possess potent in vitro activity against brain-eating amoebae, we conjugated quinazolinones derivatives with silver nanoparticles and showed that activities of the drugs were enhanced successfully after conjugation. The current study suggests that quinazolinones alone as well as conjugated with silver nanoparticles may serve as potent therapeutics against brain-eating amoebae.
    Matched MeSH terms: Amebiasis
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links